

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2505

ON THE ATTACHED CURVED SHOCK IN FRONT OF A
SHARP-NOSED AXIALLY SYMMETRICAL BODY
PLACED IN A UNIFORM STREAM

By S. F. Shen and C. C. Lin

Massachusetts Institute of Technology

Washington

October 1951

AFWEC TECHNICAL LIBRARY AFL 2811

-77. 3/7/

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2505

ON THE ATTACHED CURVED SHOCK IN FRONT OF A

SHARP-NOSED AXIALLY SYMMETRICAL BODY

PLACED IN A UNIFORM STREAM

By S. F. Shen and C. C. Lin

SUMMARY

The flow behind the attached curved shock near the nose of an axially symmetrical body placed in a uniform stream is investigated by considering the perturbations from the initial Taylor-Maccoll conical solution. The first-order perturbation yields the ratio between the initial radii of curvature of the shock wave and the body. When higherorder perturbations are included, a regular shock wave near the nose leads to a body shape which has a logarithmic singularity at the nose. It seems, therefore, that, for a given regular body, the shock-wave shape probably has a singularity at the vertex, although the initial radius of curvature remains finite.

Numerical results are obtained for the first-order perturbation equations, covering the cases with initial semivertex angle $\theta_{S_0} = 10^{\circ}$, 200, and 300, each at five different Mach numbers ranging approximately from the minimum one for an attached conical shock to a value around 5. For each value of θ_{S_0} , there is a critical Mach number, very close to the minimum one for an attached conical shock, below which the ratio of curvatures becomes negative. This Mach number has been conjectured by Crocco in the two-dimensional case as the probable starting point for the detached shock wave. Its significance is discussed here on the basis of recent works by Thomas. The variation of the ratio of curvatures with Mach number is found to be of the same nature as that in the twodimensional case, though the extent is much larger.

INTRODUCTION

The problem of the curved shock in two dimensions was first discussed by Crocco (reference 1) in 1937. Recently, papers by various authors (references 2 to 5) again indicate the current interest in the relation between the curvatures of the shock and the body. Lin and

1

Rubinov (reference 5) treated the flow behind curved shocks from a general viewpoint by expanding the hydrodynamical quantities behind the shock into Taylor series in Cartesian coordinates. They indicated that, by so doing, many problems in the axially symmetrical case could be solved in parallel with the two-dimensional ones. Nevertheless, when the curved shock is caused by a sharp-nosed body of revolution, singularity of the expansion is encountered at the nose and a different method should be applied.

This report represents an investigation of this particular problem, namely, the flow in the neighborhood of the sharp nose of a body of revolution, by means of a perturbation scheme. The difficulty arising out of an expansion in Cartesian coordinates is avoided by using polar coordinates. The relation between the initial curvatures of the shock and the body is thus obtained. On reaching the surface of the body, the first-order solution shows a logarithmic singularity at the initial semivertex angle, thereby apparently limiting the applicability only to concave bodies. It is suspected, however, that this difficulty actually arises from the asymptotic representation of the solution as used in this report and that the application of the result to convex bodies is permissible if the actual solution satisfies certain continuity conditions. It also appears from the asymptotic solution used in this report that, when high-order approximations are included, a regular shock wave would require the body behind it to have a singularity, presumably logarithmic in nature, at the nose. Conversely, this means that, if the body is representable by a regular function, the shock-wave shape might have a logarithmic singularity near the nose. The curvature of the shock would, however, stand in a finite ratio with the curvature of the body.

Numerical integrations have been carried out for the first-order perturbations for bodies with semivertex angles 10° , 20° , and 30° and a number of free-stream Mach numbers up to around 5. The variation of the ratio of the initial radii of curvature is found to be similar to that in the two-dimensional case as computed by Thomas (reference 3) or Munk and Prim (reference 4). A critical point beyond which the ratio of curvatures becomes negative likewise exists, such a point in the two-dimensional case being pointed out by Crocco (reference 1) as the probable limit of an actually attached shock wave.

The results of this report perhaps have significance as being the first step in clarifying the general problem of flow past an arbitrary body with an attached shock wave. On the practical side, its immediate application is to improve the accuracy of the usual method of characteristics by starting it by means of numerical computation at points away from the troublesome axis of symmetry. When the initial Taylor-Maccoll solution gives subsonic or partially subsonic flow behind the

shock, the method of numerical integration by means of characteristics will fail to have any starting point. The present solution, if its validity is substantiated by experiment in this range of mixed subsonic and supersonic flows behind the shock, may then be used to determine approximately the sonic line, from which subsequent calculations may be made in the usual manner.

This investigation was carried out at the Massachusetts Institute of Technology under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

The authors are indebted to Professor Z. Kopal and his staff in the Center of Analysis, M.I.T., for the numerical computations in this report.

SYMBOLS

θ ,r	polar coordinates in a meridian plane
u, v ,ρ,ρ	velocity components in r- and $\theta\text{-directions},$ pressure, and density, respectively
С	"limit" velocity, a constant for isoenergetic flow
U,p ^o ,ρ ^o ,M ^o	free-stream velocity, pressure, density, and Mach number, respectively
u_0, v_0, p_0, ρ_0	Taylor-Maccoll solution for initial vertex angle
$\overline{\mathbf{u}}, \overline{\mathbf{v}}, \overline{\mathbf{p}}, \overline{\mathbf{p}}$	perturbations from initial Taylor-Maccoll solution
^u 1, ^v 1, ^p 1, ^ρ 1	factors depending on θ in first-order perturbations
u_n, v_n, p_n, ρ_n	factors depending on θ in nth-order perturbations
q_t, q_n	velocity components at the shock in tangential and normal directions, respectively
R	radius of curvature
$\Psi_{\mathbf{w}}$	angle between shock wave and uniform stream

$\left.\begin{smallmatrix} F_{1},F_{2},F_{3} \\ G_{1},G_{2},G_{3} \\ H_{1},H_{2},H_{3} \end{smallmatrix}\right\}$	coefficient functions in differential equations for first-order perturbations
ξ,η, ζ	nondimensional representation of u_1 , v_1 , and ρ_1 , respectively
$\left.\begin{smallmatrix}f_{1},f_{2},f_{3}\\g_{1},g_{2},g_{3}\\h_{1},h_{2},h_{3}\end{smallmatrix}\right\}$	regular part of coefficient functions F_1 , F_2 , and so forth throughout interval of θ
F _{k1} ,F _{k2} ,	coefficient functions in differential equations for $(k + 1)$ th-order perturbations
f _{kl} ,f _{k2} ,	regular part of coefficient functions F_{kl} , F_{k2} , and so forth throughout interval of θ
Subscripts:	
s,w	quantities evaluated at body surface and shock wave, respectively
s_{O} , w_{O}	quantities evaluated at vertices of body surface and of shock wave, respectively

PERTURBATION EQUATION AND ITS BOUNDARY CONDITIONS

Consider a sharp-nosed body of revolution placed in a uniform stream in the direction of the axis of symmetry (fig. 1). In the neighborhood of the vertex, the shape of the body differs but slightly from that of a cone. One may therefore try to find a first-order perturbation to the well-known Taylor-Maccoll solution (reference 6), to be valid near the vertex. In view of the conical nature of the initial solution, it is logical to use spherical coordinates with the polar axis along the axis of the body. The surface of the body is represented by $\theta = \theta_{\rm S}({\bf r})$; the shock wave, by $\theta = \theta_{\rm W}({\bf r})$. The velocity components in the r- and θ -directions are denoted by u and v, respectively. The free-stream velocity is denoted by U, the pressure, by ${\bf p}^{\rm O}$, and the density, by ${\bf p}^{\rm O}$. The conditions immediately behind the curved shock are denoted by the subscript w and those on the surface of the body, by the subscript s. Needless to say, the flow behind the shock wave is still isoenergetic, though not irrotational.

With the introduction of polar coordinates, the equations of motion are:

$$u \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} - \frac{v^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r}$$
 (1)

5

$$u \frac{\partial v}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} + \frac{uv}{r} = -\frac{1}{\rho} \frac{\partial p}{r \partial \theta}$$
 (2)

The equation of continuity is

$$\frac{\partial}{\partial \mathbf{r}} (\rho \mathbf{u}) + \frac{\partial}{\mathbf{r}} \frac{\partial}{\partial \theta} (\rho \mathbf{v}) + 2 \frac{\rho \mathbf{u}}{\mathbf{r}} + \frac{\rho \mathbf{v}}{\mathbf{r}} \cot \theta = 0$$
 (3)

In addition there is Bernoulli's equation for isoenergetic flow,

$$\frac{2\gamma}{\gamma - 1} \frac{p}{\rho} = c^2 - u^2 - v^2$$

where c is the "limit" velocity, remaining constant throughout the field of flow, and γ , the ratio of specific heats. Equations (1) to (4) govern the four dependent variables p, ρ , u, and v. As is usually assumed, the solution starts with the Taylor-Maccoll solution for a cone of semivertex angle equal to the initial angle θ_{S_0} of the body. One tries to build upon it small perturbations to take care of the subsequent curvature. Consider then a perturbation scheme by writing

$$u = u_{O}(\theta) + \overline{u}(r,\theta)$$

$$v = v_{O}(\theta) + \overline{v}(r,\theta)$$

$$\rho = \rho_{O}(\theta) + \overline{\rho}(r,\theta)$$

$$p = p_{O}(\theta) + \overline{p}(r,\theta)$$
(5)

In equations (5) u_0 , v_0 , ρ_0 , and ρ_0 are the Taylor-Maccoll solution mention above. They satisfy the relations

$$\frac{d\mathbf{u}_0}{d\theta} - \mathbf{v}_0 = 0 \tag{6}$$

$$v_{O}\left(\frac{dv_{O}}{d\theta} + u_{O}\right) = -\frac{1}{\rho_{O}}\frac{dp_{O}}{d\theta} \tag{7}$$

$$\frac{d}{d\theta} (\rho_0 v_0) + 2\rho_0 u_0 + \rho_0 v_0 \cot \theta = 0$$
 (8)

The barred quantities are the perturbations. Substituting equation (5) into equations (1) to (4), one obtains a set of equations involving $u_{\rm O}$, $v_{\rm O}$, and so forth, together with their perturbations. With the assumption of small perturbations, the quadratic terms of the perturbation quantities may be neglected and the following equations result:

$$\frac{1}{\gamma} u_0 \frac{\partial \overline{u}}{\partial r} + v_0 \frac{\partial \overline{u}}{r \partial \theta} - \frac{\overline{v}v_0}{r} - \frac{\gamma - 1}{\gamma} v_0 \frac{\partial \overline{v}}{\partial r} + \frac{p_0}{\rho_0^2} \frac{\partial \overline{\rho}}{\partial r} = 0$$
 (9)

$$-\frac{\gamma-1}{\gamma} u_0 \frac{\partial \overline{u}}{r \partial \theta} + u_0 \left(\frac{\partial \overline{v}}{\partial r} + \frac{\overline{v}}{r} \right) + \frac{1}{\gamma} v_0 \frac{\partial \overline{v}}{r \partial \theta} + \frac{v_0}{r} \overline{u} + \frac{1}{\gamma} \overline{v} \frac{\partial v}{\gamma \partial \theta} -$$

$$\frac{\gamma-1}{\gamma}\left(\frac{\partial u_0}{r \ \partial \theta} + \frac{u_0}{\rho_0} \frac{\partial \rho_0}{r \ \partial \theta}\right)\overline{u} - \frac{\gamma-1}{\gamma} \frac{1}{\rho_0} \frac{\partial \rho_0}{r \ \partial \theta} v_0\overline{v} -$$

$$\frac{\gamma - 1}{\gamma} v_0 \frac{\partial v_0}{r \partial \theta} \frac{\overline{\rho}}{\rho_0} - \frac{p_0}{\rho_0^2} \left(\frac{\overline{\rho}}{\rho_0} \frac{\partial \rho_0}{r \partial \theta} - \frac{\partial \overline{\rho}}{r \partial \theta} \right) = 0$$
 (10)

$$\rho_{O}\left(\frac{\partial \overline{u}}{\partial r} + \frac{2\overline{u}}{r}\right) + u_{O}\left(\frac{\partial \overline{\rho}}{\partial r} + \frac{2\overline{\rho}}{r}\right) + \rho_{O}\frac{\partial \overline{v}}{r \partial \theta} + \overline{\rho}\left(\frac{\partial v_{O}}{r \partial \theta} + \frac{v_{O}}{r}\cot\theta\right) +$$

$$v_{O}\frac{\partial \overline{\rho}}{r \partial \theta} + \overline{v}\left(\frac{\partial \rho_{O}}{r \partial \theta} + \frac{\rho_{O}}{r}\cot\theta\right) = 0$$
(11)

One may try to find solutions of the form

$$\overline{\mathbf{u}} = \beta_{1}(\mathbf{r})\mathbf{u}_{1}(\theta)$$

$$\overline{\mathbf{v}} = \beta_2(\mathbf{r})\mathbf{v}_1(\theta)$$

$$\overline{\rho} = \beta_3(\mathbf{r})\rho_1(\theta)$$

where $\beta_1(r)$, $\beta_2(r)$, and $\beta_3(r)$ approach zero with r. This restriction is to ensure that the flow will approach the Taylor-Maccoll flow near the vertex, for all values of θ . After introducing this form of solution into equations (9) to (11), in general,

$$\beta_1(\mathbf{r}) = \beta_2(\mathbf{r}) = \beta_3(\mathbf{r}) = \mathbf{r}^n$$

where n is any positive number. For the immediate neighborhood of the vertex, it suffices to take the lowest value of n satisfying the boundary conditions. It then turns out, on assuming both the body and the shock shapes to have finite initial curvatures, that the only possibility to satisfy the boundary conditions is to take n = 1 (cf. equations (23) to (33)); that is,

$$\beta_1(r) = \beta_2(r) = \beta_3(r) = r$$
 (12)

so that

$$\overline{\mathbf{u}} = \mathbf{r}\mathbf{u}_{\underline{1}}(\theta)$$

$$\overline{\mathbf{v}} = \mathbf{r}\mathbf{v}_{\underline{1}}(\theta)$$

$$\overline{\rho} = \mathbf{r}\rho_{\underline{1}}(\theta)$$
(13)

The requirement on β_1 , β_2 , and β_3 for small values of r is automatically satisfied, and the solutions thus obtained should be valid asymptotic solutions for small values of r. Equations (9) to (11) for the perturbations then reduce to a set of ordinary linear differential equations:

$$\frac{1}{\gamma} u_0 u_1 + v_0 \frac{du_1}{d\theta} - \frac{2\gamma - 1}{\gamma} v_0 v_1 + \frac{p_0}{\rho_0^2} \rho_1 = 0$$
 (14)

$$-\frac{\gamma-1}{\gamma} u_0 \frac{du_1}{d\theta} + u_1 \left(\frac{1}{\gamma} v_0 - \frac{\gamma-1}{\gamma} \frac{u_0}{\rho_0} \frac{d\rho_0}{d\theta} \right) + \frac{1}{\gamma} v_0 \frac{dv_1}{d\theta} +$$

$$v_1 \left(2u_0 + \frac{1}{\gamma} \frac{dv_0}{d\theta} - \frac{\gamma - 1}{\gamma} \frac{v_0}{\rho_0} \frac{d\rho_0}{d\theta} \right) + \frac{p_0}{\rho_0^2} \frac{d\rho_1}{d\theta} - \frac{p_0}{\rho_0^2} \frac{\rho_1}{\rho_0} \frac{d\rho_0}{d\theta} = 0 \quad (15)$$

$$3\rho_{O}u_{1} + \rho_{O}\frac{dv_{1}}{d\theta} + v_{1}\left(\frac{d\rho_{O}}{d\theta} + \rho_{O} \cot \theta\right) + v_{O}\frac{d\rho_{1}}{d\theta} +$$

$$\rho_1 \left(3u_0 + \frac{dv_0}{d\theta} + v_0 \cot \theta \right) = 0 \tag{16}$$

These equations may be put into the standard form of first-order linear differential equations for easier discussion, namely,

$$\frac{du_1}{d\theta} = F_1 u_1 + F_2 v_1 + F_3 \rho_1 \tag{17}$$

$$\frac{dv_1}{d\theta} = G_1 u_1 + G_2 v_1 + G_3 \rho_1 \tag{18}$$

$$\frac{d\rho_{1}}{d\theta} = H_{1}u_{1} + H_{2}v_{1} + H_{3}\rho_{1}$$
 (19)

where the F's, G's, and H's are all functions of θ , containing the conical solutions u_0 , v_0 , and ρ_0 . Explicitly,

$$F_{1} = -\frac{1}{\gamma} \frac{u_{0}}{v_{0}}$$

$$F_{2} = \frac{2\gamma - 1}{\gamma}$$

$$F_{3} = -\frac{p_{0}}{\rho_{0}^{2} v_{0}}$$

$$(20)$$

$$G_{1} = \frac{3 \frac{p_{o}}{\rho_{o}} - \frac{1}{\gamma} v_{o}^{2} + \frac{\gamma - 1}{\gamma} \frac{\rho_{o}'}{\rho_{o}} u_{o} v_{o} - \frac{\gamma - 1}{\gamma^{2}} u_{o}^{2}}{\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$G_{2} = \frac{\frac{p_{o}}{\rho_{o}} \left(\frac{\rho_{o}'}{\rho_{o}} + \cot \theta\right) - v_{o} \left[2u_{o} + \frac{1}{\gamma} v_{o}' - \frac{\gamma - 1}{\gamma} \frac{\rho_{o}'}{\rho_{o}} v_{o} - \frac{(2\gamma - 1)(\gamma - 1)}{\gamma^{2}} u_{o}\right]}{\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$G_{3} = \frac{p_{o}}{\rho_{o}^{2}} \frac{v_{o}' + v_{o} \left(\frac{\rho_{o}'}{\rho_{o}} + \cot \theta\right) + \left(\frac{2\gamma + 1}{\gamma}\right) u_{o}}{\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$(21)$$

$$H_{1} = \frac{-\frac{2}{\gamma} v_{o} - \frac{\gamma - 1}{\gamma} \frac{\rho_{o}^{'}}{\rho_{o}} u_{o} + \frac{\gamma - 1}{\gamma^{2}} \frac{u_{o}^{2}}{v_{o}}}{\frac{1}{\rho_{o}} \left(\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}\right)}$$

$$H_{2} = \frac{2u_{o} + \frac{1}{\gamma} v_{o}^{'} - \left(\frac{\rho_{o}^{'}}{\rho_{o}} + \frac{1}{\gamma} \cot \theta\right) v_{o} - \frac{(2\gamma - 1)(\gamma - 1)}{\gamma^{2}} u_{o}}{\frac{1}{\rho_{o}} \left(\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}\right)}$$

$$H_{3} = \frac{-\frac{p_{o}}{\rho_{o}} \left(\frac{\rho_{o}^{'}}{\rho_{o}} - \frac{\gamma - 1}{\gamma} \frac{u_{o}}{v_{o}}\right) - \frac{1}{\gamma} v_{o} \left(v_{o}^{'} + 3u_{o} + v_{o} \cot \theta\right)}{\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$(22)$$

As for the boundary conditions to be satisfied by the complete flow, they may be divided into those at the shock wave and that at the body surface. At the shock wave $\theta = \theta_w(r)$, the variables u, v, and ρ should be connected to the uniform stream by the well-known shock conditions. At the body surface, the resultant velocity should be tangent to the body. Consequently, for the perturbations u_1 , v_1 , and ρ_1 , the following conditions must hold:

$$(\mathbf{r}\mathbf{u}_{1},\mathbf{r}\mathbf{v}_{1},\mathbf{r}\rho_{1})_{\theta=\theta_{w}} = (\mathbf{u}_{w} - \mathbf{u}_{o},\mathbf{v}_{w} - \mathbf{v}_{o},\rho_{w} - \rho_{o})_{\theta=\theta_{w}}$$
 (23)

$$\left(\frac{\mathbf{v}_{0} + \mathbf{r}\mathbf{v}_{1}}{\mathbf{u}_{0} + \mathbf{r}\mathbf{u}_{1}}\right)_{\theta = \theta_{S}} = \left(\mathbf{r} \frac{d\theta_{S}}{d\mathbf{r}}\right) \tag{24}$$

In condition (23), care must be taken to interpret correctly the exact meaning of the right-hand side. With reference to figure 2, the quantities u_W , u_O , and so forth are to be evaluated, strictly speaking, at point B, which is at an angle θ_W to the axis of symmetry and at which

the shock wave is at an angle ψ_W with the uniform stream. It is now assumed that the shock-wave angle has no infinite curvature or higher-order derivatives and, therefore, is expressible as

$$\theta_{W} = \theta_{W_{O}} + r \frac{d\theta_{W}}{dr} + o(r)$$
 (25)

Also,

$$\psi_{\rm W} = \theta_{\rm W} + \tan^{-1} \frac{{\rm r} \, {\rm d}\theta_{\rm W}}{{\rm d}{\rm r}} \approx \theta_{\rm W} + {\rm r} \, \frac{{\rm d}\theta_{\rm W}}{{\rm d}{\rm r}} \tag{26}$$

For small values of $\, \mathbf{r} \,$ the shock conditions at $\, \mathbf{B} \,$ are therefore obtained by

$$\mathbf{u}_{\mathbf{W}} \bigg|_{\theta = \theta_{\mathbf{W}}} \approx \mathbf{u}_{\mathbf{W}} \bigg|_{\theta = \theta_{\mathbf{W}_{\mathbf{O}}}} + 2\mathbf{r} \left. \frac{d\mathbf{u}_{\mathbf{W}}}{d\psi} \frac{d\theta_{\mathbf{W}}}{d\mathbf{r}} \right|_{\theta = \theta_{\mathbf{W}_{\mathbf{O}}}} \tag{27}$$

and similar expressions can be obtained for v_w and ρ_w . The argument for the determination of u_o , v_o , and ρ_o at $\theta=\theta_w$ runs along the same line. It may be noted that the conical solution is no longer regarded as only valid between the conical shock wave and the initial vertex angle of the body, but its validity has been extended analytically to the entire region with boundaries computed in reference 7.

Thus, from the values at point A lying on the line $\theta=\theta_{W_O}$ and having the same radius vector r as B, the values of u_O , and so forth at B may be evaluated. There follows,

$$u_{O}\Big|_{\theta=\theta_{W}} \approx u_{O}\Big|_{\theta=\theta_{W_{O}}} + r \frac{du_{O}}{d\theta} \frac{d\theta_{W}}{dr}\Big|_{\theta=\theta_{W_{O}}}$$
 (28)

and similar expressions can be obtained for v_0 and ρ_0 . Remembering that in the conical solution at $\theta = \theta_{W_0}$,

$$u_w = u_0$$

 $v_w = v_0$
 $\rho_w = \rho_0$

one may reduce condition (23) to

$$(ru_1, rv_1, r\rho_1)_{\theta=\theta_W} = \left[r\left(2\frac{du_W}{d\psi} - \frac{du_O}{d\theta}\right)\frac{d\theta_W}{dr}, \dots\right]_{\theta=\theta_{W_O}}$$

or

Since r is assumed to be a small parameter and the exceptional case of infinite curvature is excluded, the boundary conditions as stated above may actually be satisfied at $\theta = \theta_{W_O}$ instead of $\theta = \theta_W$ for the left-hand side. Hence the final form is

Condition (24) at the body surface may likewise be put into a more explicit form. Assuming now that near the vertex the body shape may be written as

$$\theta_{\rm S} = \theta_{\rm S_O} + r \frac{d\theta_{\rm S}}{dr} + \text{Higher-order terms}$$
 (30)

then

$$v_{O}\Big|_{\theta=\theta_{S}} \approx v_{O}\Big|_{\theta=\theta_{S_{O}}} + r \frac{dv_{O}}{d\theta} \frac{d\theta_{S}}{dr}\Big|_{\theta=\theta_{S_{O}}} = r \frac{dv_{O}}{d\theta} \frac{d\theta_{S}}{dr}\Big|_{\theta=\theta_{S_{O}}}$$
 (31)

13

since $v_0 \Big|_{\theta=\theta_{S_0}} = 0$. As a result

$$\left(\frac{rv_{1}}{u_{o} + ru_{1}}\right)_{\theta = \theta_{S}} = \left[r\left(1 - \frac{1}{u_{o}} \frac{dv_{o}}{d\theta}\right) \frac{d\theta_{S}}{dr}\right]_{\theta = \theta_{S}}$$
(32)

By omitting the higher-order terms, the condition at the body surface finally reduces to

$$\left(\frac{\mathbf{v}_{1}}{\mathbf{u}_{0}}\right)_{\theta=\theta_{B_{0}}} = \left(1 - \frac{1}{\mathbf{u}_{0}} \frac{d\mathbf{v}_{0}}{d\theta}\right) \frac{d\theta_{B}}{d\mathbf{r}}\Big|_{\theta=\theta_{B_{0}}}$$
(33)

Regarding the problem now as an initial-value problem, one sees that from equation (29) the initial values of the variables are proportional to $\frac{\mathrm{d}\theta_{\mathrm{W}}}{\mathrm{d}r}\Big|_{\theta=\theta_{\mathrm{W}_{\mathrm{O}}}}$, and the final value of v_1/u_0 reached at the

body as given by equation (33) is proportional to $\frac{d\theta_s}{dr}\Big|_{\theta=\theta_{s_0}}$. It there-

fore may be concluded that, because of the linearity of equations (17) to (19), the quantities $\frac{d\theta_{\rm g}}{dr}\Big|_{\theta=\theta_{\rm SO}}$ and $\frac{d\theta_{\rm w}}{dr}\Big|_{\theta=\theta_{\rm WO}}$ are simply propor-

tional to each other. Restricted to the neighborhood of the nose, the first derivative $d\theta/dr$ in fact may be interpreted as the curvature. For, from elementary calculus,

$$\frac{1}{R} = \frac{d\psi}{ds} = \frac{2\frac{d\theta}{dr} + r\frac{d^2\theta}{dr^2} + r^2\left(\frac{d\theta}{dr}\right)^3}{\left[1 + r^2\left(\frac{d\theta}{dr}\right)^2\right]^{3/2}} \rightarrow 2\frac{d\theta}{dr}$$

as $r \longrightarrow 0$.

The right-hand side of equation (29) involves derivatives of the oblique shock conditions and the conical solution. The explicit expressions can be easily obtained. Resolving the velocity behind shock into tangential and normal components with respect to the shock (fig. 3) it may be readily verified that, as $r \longrightarrow 0$, the following are true:

$$\frac{d\mathbf{u}_{\mathbf{w}}}{d\mathbf{v}} = \frac{d\mathbf{q}_{\mathbf{t}}}{d\mathbf{v}} - \frac{1}{2} \mathbf{v}_{\mathbf{w}} \tag{34}$$

$$\frac{\mathrm{d}\mathbf{v}_{\mathbf{w}}}{\mathrm{d}\psi} = -\frac{\mathrm{d}\mathbf{q}_{\mathbf{n}}}{\mathrm{d}\psi} + \frac{1}{2}\mathbf{u}_{\mathbf{w}} \tag{35}$$

where $\mathrm{d}\mathbf{q}_{\mathrm{t}}/\mathrm{d}\psi$ and $\mathrm{d}\mathbf{q}_{\mathrm{n}}/\mathrm{d}\psi$ may be derived from the standard shock relations as

$$\frac{\mathrm{dq_t}}{\mathrm{d\psi}} = -\mathrm{U} \sin \psi \tag{36}$$

$$\frac{dq_n}{d\psi} = U \cos \psi \left[\frac{2(\gamma - 1)}{\gamma + 1} - \frac{\rho^0}{\rho_W} \right]$$
 (37)

The variation of density with shock angle is simply

$$\frac{1}{\rho^{O}} \frac{d\rho_{W}}{d\psi} = \left(\frac{\rho_{W}}{\rho^{O}}\right)^{2} \frac{\mu \cot \psi}{(\gamma + 1)(M^{O})^{2} \sin^{2}\psi}$$
(38)

The conical solution is tabulated in detail in reference 7. Maccoll (reference 8) has expanded the solution near the cone surface $\theta = \theta_{S_0}$ as

$$\frac{u_0}{u_{s_0}} = 1 - \left(\theta - \theta_{s_0}\right)^2 + \frac{\cot \theta_{s_0}}{3} \left(\theta - \theta_{s_0}\right)^3 -$$

$$\begin{bmatrix} \cot^{2}\theta_{s_{0}} + \frac{8}{3(\gamma - 1)} & \frac{\left(\frac{u_{s_{0}}}{c}\right)^{2}}{1 - \frac{\left(u_{s_{0}}\right)^{2}}{c^{2}}} \end{bmatrix} \frac{\left(\theta - \theta_{s_{0}}\right)^{\frac{1}{4}}}{\frac{1}{4}} + \frac{1}{2} + \frac{1}$$

$$\begin{bmatrix}
\cot^{3}\theta_{s_{0}} + \frac{0.5833 + \frac{87 - 7\gamma}{12(\gamma - 1)} \frac{(u_{s_{0}})^{2}}{c^{2}}}{1 - \frac{(u_{s_{0}})^{2}}{c^{2}}} \cot \theta_{s_{0}}
\end{bmatrix} \frac{(\theta - \theta_{s_{0}})^{5}}{5} + \dots$$
(39)

where u_{S_O} stands for the value of u_O at $\theta=\theta_{S_O}$. The series forms for v_O and ρ_O may be derived by substituting equation (39) into the differential equations. Also known is the fact that the conical solution is analytic for a range of θ larger than the closed interval $\theta_{W_O} \ge \theta \ge \theta_{S_O}$. This knowledge is important because in formulating boundary conditions (29) and (32) the analyticity of the conical solution has been used. In other words, in taking the derivatives $du_O/d\theta$, and so forth, both the shock wave and the conical body surface are considered to be absent and the conical solution is extended beyond the range $\theta_{W_O} \ge \theta \ge \theta_{S_O}$.

INTEGRATION OF PERTURBATION EQUATIONS

In view of the proportionality of $\frac{d\theta_B}{dr}\Big|_{\theta=\theta_{SO}}$ and $\frac{d\theta_W}{dr}\Big|_{\theta=\theta_{W_O}}$ concluded from the formulation of the boundary conditions, equations (17) to (19) are to be put into nondimensional form by using the initial radius of curvature R_W of the shock wave as the characteristic length, the "limit" velocity c as the characteristic velocity, and the free-

$$\xi = \frac{2R_W u_1}{c}$$

$$\eta = \frac{2R_W v_1}{c}$$

$$\zeta = \frac{2R_W \rho_1}{c}$$

Then, equations (17) to (19) may be rewritten as

stream density ρ^{O} as the characteristic density. Let

$$\xi^{1} = \frac{f_{1}}{\theta - \theta_{B_{0}}} \xi + f_{2} \eta + \frac{f_{3}}{\theta - \theta_{B_{0}}} \zeta$$
 (40)

$$\eta' = g_1 \xi + g_2 \eta + g_3 \zeta$$
 (41)

$$\zeta' = \frac{h_1}{\theta - \theta_{\tilde{s}_0}} \xi + h_2 \eta + \frac{h_3}{\theta - \theta_{\tilde{s}_0}} \zeta$$
 (42)

The functions f, g, and h are easily identified by comparing with equations (20) to (22). The results are:

$$f_{1} = (\theta - \theta_{s_{0}})F_{1} \qquad g_{1} = G_{1} \qquad h_{1} = \frac{c}{\rho^{o}}(\theta - \theta_{s_{0}})H_{1}$$

$$f_{2} = F_{2} \qquad g_{2} = G_{2} \qquad h_{2} = \frac{c}{\rho^{o}}H_{2}$$

$$f_{3} = \frac{\rho^{o}}{c}(\theta - \theta_{s_{0}})F_{3} \qquad g_{3} = \frac{\rho^{o}}{c}G_{3} \qquad h_{3} = (\theta - \theta_{s_{0}})H_{3}$$
(43)

A factor $(\theta - \theta_{SO})$ is here multiplied by F_1 , F_3 , H_1 , and H_3 because it is recognized from equations (20) and (22) that each of these functions has a pole at $\theta = \theta_{SO}$, where v_O varies as $\theta - \theta_{SO}$. The functions f_1 , and so forth are made regular for easier discussion.

The boundary conditions now become:

$$\xi = 2 \frac{d(u_{W}/c)}{d\psi} \Big|_{\psi=\theta_{W_{O}}} - \frac{d(u_{O}/c)}{d\theta} \Big|_{\theta=\theta_{W_{O}}}$$

$$\eta = 2 \frac{d(v_{W}/c)}{d\psi} \Big|_{\psi=\theta_{W_{O}}} - \frac{d(v_{O}/c)}{d\theta} \Big|_{\theta=\theta_{W_{O}}}$$
at $\theta = \theta_{W_{O}}$ (44)
$$\zeta = 2 \frac{d(\rho_{W}/\rho^{O})}{d\psi} \Big|_{\psi=\theta_{W_{O}}} - \frac{d(\rho_{O}/\rho^{O})}{d\theta} \Big|_{\theta=\theta_{W_{O}}}$$

$$\frac{\eta}{u_{S_O}/c} = \left(1 - \frac{1}{u_{S_O}/c} d \frac{v_{S_O}/c}{d\theta}\right)^{R_{W_O}}_{R_{S_O}}$$

$$= 3 \frac{R_{W_O}}{R_{S_O}} \qquad \text{at } \theta = \theta_{S_O}$$
 (45)

since

$$\frac{\frac{d(v_{s_0}/c)}{d\theta}}{u_{s_0}/c} = -2$$

by equations (6) and (39). Here R_{S_O} is the initial radius of curvature of the body surface. Since the functions f, g, and h are known only in the form of numerical data such as those presented in reference 7, integration of equations (40) to (42) generally can only be done by numerical process. With given θ_{S_O} and M^O , one starts from the initial points represented by equations (44) and integrates stepwise until $\theta = \theta_{S_O}$ is reached. The value of η then bears out the ratio of the radii of curvature by equation (45).

The appearance of poles at $\theta=\theta_{S_O}$ in some of the coefficients of ξ and ζ in equations (40) to (42) indicates that singularities are to be expected in the solutions. As is well-known from the theory of differential equations (see, e.g., reference 9) the singularity here is in fact a "regular" one. If the solutions are assumed to be of the form

$$\xi = (\theta - \theta_{S_O})^{\alpha} P(\theta)$$

$$\eta = (\theta - \theta_{S_O})^{\alpha} Q(\theta)$$

$$\zeta = (\theta - \theta_{S_O})^{\alpha} R(\theta)$$

where P, Q, and R are analytic at $\theta = \theta_{S_O}$, the exponent α may be determined from the indicial equation of equations (40) to (42):

$$\begin{vmatrix} f_{10} - \alpha & 0 & f_{30} \\ 0 & -\alpha & 0 \\ h_{10} & 0 & h_{30} - \alpha \end{vmatrix} = 0$$
 (46)

in which f_{10} , f_{30} , h_{10} , and h_{30} are the values of the functions f_1 , f_3 , h_1 , and h_3 , respectively, at $\theta = \theta_{50}$. Hence

$$\alpha \left[\alpha^2 - \alpha \left(f_{10} + h_{30} \right) + f_{10} h_{30} - f_{30} h_{10} \right] = 0$$
 (47)

It is easy to verify that, based on equation (39),

$$f_{10} = \frac{1}{2\gamma}$$

$$f_{30} = \frac{p_{s_0}}{2\rho_{s_0}^2 u_{s_0}}$$

$$h_{10} = \frac{\gamma - 1}{2\gamma^2} \frac{\rho_{s_0}^2 u_{s_0}}{p_{s_0}}$$

$$h_{30} = \frac{\gamma - 1}{2\gamma}$$
(48)

By substitution of equation (48) into the indicial equation (46), the latter becomes

$$\alpha^2\left(\alpha - \frac{1}{2}\right) = 0$$

with roots 0, 0, and 1/2. Consequently, the solutions near the singularity are of the form

$$\xi = \sum_{n=0}^{\infty} a_{\xi n} (\theta - \theta_{s_0})^n + \sum_{n=0}^{\infty} b_{\xi n} (\theta - \theta_{s_0})^{n + \frac{1}{2}} +$$

$$\log (\theta - \theta_{s_0}) \sum_{n=0}^{\infty} c_{\xi n} (\theta - \theta_{s_0})^n$$

$$\eta = \sum_{n=0}^{\infty} a_{\eta n} (\theta - \theta_{s_0})^n + \sum_{n=0}^{\infty} b_{\eta n} (\theta - \theta_{s_0})^{n + \frac{3}{2}} +$$

$$\log (\theta - \theta_{s_0}) \sum_{n=0}^{\infty} c_{\eta n} (\theta - \theta_{s_0})^{n+1}$$

$$\zeta = \sum_{n=0}^{\infty} a_{\zeta n} (\theta - \theta_{s_0})^n + \sum_{n=0}^{\infty} b_{\zeta n} (\theta - \theta_{s_0})^{n + \frac{1}{2}} +$$

$$\log (\theta - \theta_{s_0}) \sum_{n=0}^{\infty} c_{\zeta n} (\theta - \theta_{s_0})^n$$

It may be noted that η is one degree higher in $\theta - \theta_{S_O}$ in the series with coefficients b_n and c_n , because of the nature of equation (41). This fact is fortunate because the logarithmic infinity at $\theta = \theta_{S_O}$ in the solution of η is thus eliminated, leaving a finite value for the ratio of the radii of curvature. The logarithmic terms in ξ and ζ are more troublesome. Although the actual perturbations are given by rul and $r\rho_1$ (or $r\xi$ and $r\zeta$), at the point $\theta = \theta_{S_O}$ the perturbations are small only if $r \log_e \left(\theta - \theta_{S_O}\right) \longrightarrow 0$. If the body is concave, that is, $\theta \ge \theta_{S_O}$, and is assumed to have a finite initial curvature, there is obtained

$$r_{s} = \frac{1}{\left(\frac{d\theta_{s}}{dr}\right)_{\theta=\theta_{s_{0}}}} \left(\theta - \theta_{s_{0}}\right) + \text{Higher-order terms}$$
 (50)

20 . NACA TN 2505

Evaluated at the body surface, the combinations rul and rpl obviously go to zero. The formulation of the boundary condition (45) is still valid, and one obtains a finite ratio R_{W_O}/R_{S_O} for each value of θ_{S_O} and free-stream Mach number M^O . On the other hand, if the body is convex, the region of flow involves both θ - $\theta_{S_O} > 0$ and θ - $\theta_{S_O} < 0$. The assumption of small perturbation breaks down at the point $\theta = \theta_{S_O}$ and the procedure adopted above requires further examination. A discussion of this point will be taken up in the section "Numerical Results and Discussion." Consider for the moment, then, only bodies concave near the vertex.

Of all the coefficients in the series solutions (49), only three may be chosen to fit the boundary conditions. In order to obtain the recurrence formulas for the rest, expand first

$$f_{1} = \sum_{n=0}^{\infty} f_{1n} (\theta - \theta_{s_{0}})^{n}$$

$$g_{1} = \sum_{n=0}^{\infty} g_{1n} (\theta - \theta_{s_{0}})^{n}$$

$$h_{1} = \sum_{n=0}^{\infty} h_{1n} (\theta - \theta_{s_{0}})^{n}$$
(51)

and so on. By substituting into equations (40) to (42), the following equations are derived:

$$f_{10}c_{\xi 0} + f_{30}c_{\zeta 0} = 0$$

$$f_{10}c_{\xi 1} + f_{11}c_{\xi 0} + f_{30}c_{\zeta 1} + f_{31}c_{\zeta 0} - c_{\xi 1} = 0$$

$$\sum_{l+m=n} \left(f_{1l}c_{\xi m} + f_{3l}c_{\zeta m} \right) - nc_{\xi n} + f_{2}c_{\eta(n-2)} = 0$$

$$(n = 2, 3, 4, ...)$$

$$\sum_{l+m=n}^{g_{10}^{c}\xi_{0}} g_{1l}^{c}\xi_{m} + g_{3l}^{c}\xi_{m} + \sum_{l+m=n-1}^{g_{2l}^{c}\eta_{m}} - (n+1)c_{\eta_{n}} = 0$$

$$(n = 1, 2, 3, ...)$$
(53)

$$h_{10}c_{\xi 0} + h_{30}c_{\xi 0} = 0$$

$$h_{10}c_{\xi 1} + h_{11}c_{\xi 0} + h_{30}c_{\xi 1} + h_{31}c_{\xi 0} - c_{\xi 1} = 0$$

$$\sum_{l+m=n} \left(h_{1l}c_{\xi m} + h_{3l}c_{\xi m} \right) - nc_{\xi n} + \sum_{l+m=n-2} h_{2l}c_{\eta m} = 0$$

$$(n = 2, 3, 4, ...)$$

$$f_{10}b_{\xi 0} + f_{30}b_{\zeta 0} - \frac{1}{2}b_{\xi 0} = 0$$

$$f_{10}b_{\xi 1} + f_{11}b_{\xi 0} + f_{30}b_{\zeta 1} + f_{31}b_{\zeta 0} - \frac{3}{2}b_{\xi 1} = 0$$

$$\sum_{l+m=n} \left(f_{1l}b_{\xi m} + f_{3l}b_{\zeta m}\right) - \left(n + \frac{1}{2}\right)b_{\xi n} + f_{2}b_{\eta(n-2)} = 0$$

$$(n = 2, 3, 4, ...)$$

$$g_{10}^{b}\xi_{0} + g_{30}^{b}\xi_{0} - \frac{3}{2}b_{\eta 0} = 0$$

$$g_{10}^{b}\xi_{1} + g_{11}^{b}\xi_{0} + g_{30}^{b}\xi_{1} + g_{31}^{b}\xi_{0} - \frac{5}{2}b_{\eta 1} + g_{20}^{b}\eta_{0} = 0$$

$$\sum_{l+m=n} \left(g_{1l}^{b}\xi_{m} + g_{3l}^{b}\xi_{m}\right) - \left(n + \frac{3}{2}\right)b_{\eta n} + \sum_{l+m=n-1} g_{2l}^{b}\eta_{m} = 0$$

$$(n = 2, \cdot 3, \cdot 4, \cdot \cdot \cdot)$$

$$\begin{array}{l} h_{10}b_{\xi 0} + h_{30}b_{\zeta 0} - \frac{1}{2}b_{\zeta 0} = 0 \\ \\ h_{10}b_{\xi 1} + h_{11}b_{\xi 0} + h_{30}b_{\zeta 1} + h_{31}b_{\zeta 0} - \frac{3}{2}b_{\zeta 1} = 0 \\ \\ \sum_{l+m=n} \left(h_{1l}b_{\xi m} + h_{3l}b_{\zeta m}\right) - b_{\zeta n}\left(n + \frac{1}{2}\right) + \sum_{l+m=n-2} h_{2l}b_{\eta m} = 0 \\ \\ (n = 2, 3, 4, \dots) \end{array}$$

$$\frac{-c_{\xi 0} + f_{10}a_{\xi 0} + f_{30}a_{\xi 0} = 0}{\sum_{l+m=n} \left(f_{1l}a_{\xi m} + f_{3l}a_{\xi m} \right) - na_{\xi n} - c_{\xi n} + f_{2}a_{\eta(n-1)} = 0}$$

$$(n = 1, 2, 3, ...)$$
(58)

$$\sum_{l+m=n} \left(g_{1l} a_{\xi m} + g_{3l} a_{\zeta m} + g_{2l} a_{\eta m} \right) - c_{\eta n} - (n+1) a_{\eta(n+1)} = 0$$

$$(n = 0, 1, 2, 3, ...) \quad (59)$$

NACA TN 2505 23

$$\frac{h_{10}a_{\xi 0} + h_{30}a_{\zeta 0} - c_{\zeta 0} = 0}{\sum_{l+m=n+1} \left(h_{1l}a_{\xi m} + h_{3l}a_{\zeta m}\right) - c_{\zeta(n+1)} + \sum_{l+m=n} h_{2l}a_{\zeta m} - a_{\zeta(n+1)}(n+1) = 0}$$
(60)

In getting nearer to $\theta=\theta_{S_O}$ the method of numerical integration may become inconvenient. The series forms are to take over from there on to indicate the behavior of the various quantities. The first three coefficients in the expansions (51) are given in appendix A.

In spite of the fact that logarithmic singularities occur in both ξ and ζ near the vertex, the omission of quadratic terms of the perturbations in the derivation of equations (9) to (11) does not lead to inconsistency when the body is concave. For, it is clear that each quadratic term will be one degree higher in r in comparison with the linear terms. As in the discussion following equations (49), one may put r proportional to $\theta - \theta_{S_0}$ along the body. Then the same arguments may be used to justify the omission.

The logarithmic nature of the solution does lead to other complications. First, one would suspect that a regular shock curve does not lead to a regular body shape, and vice versa. It has been show, however, that the ratio of the initial curvatures is finite (cf. equation (45)). Singularities are revealed only when higher derivatives are investigated (see appendix B). Another complication is associated with convex bodies. The logarithmic singularity of the solution apparently prevents one from applying boundary conditions on the body, as pointed out above. This difficulty presumably comes from the inadequate knowledge of the mathematical nature of the solution and the improper method of representation. The representation may in fact be interpreted as an asymptotic one and is shown to lead to useful results only in a region bounded by a curve of the nature of equation (50). There is reason to suspect, however, that the ratio of curvature calculated for concave bodies also holds for the convex case. Mathematically speaking, the asymptotic representation of a function, as has been adopted in this report, is known to exhibit rather frequently singularities which are absent in the function itself. For

extensions of the present results to convex bodies, it is only necessary that the quantity $\frac{\partial^2 \mathbf{v}}{\partial \mathbf{r}} \frac{\partial \theta}{\partial \theta}$ have a unique value for $\theta = \theta_{s_0}$ at the vertex in the exact solution. For, the value of $\frac{\partial^2 v}{\partial r} \frac{\partial \theta}{\partial \theta}$ evaluated by following a path along the body surface would be proportional to the curvature of the body, while the present method of calculation gives a valid result if the path satisfies the restriction (50), say. If these are the same, the above calculations hold with only a reversal of the signs of Rwo and Rso, and the ratio would not be changed. Physically, one may also expect that a change of the body curvature one way or another would produce similar changes at the shock. To be sure, these arguments are not conclusive, and the application of the results to convex bodies must be taken with reserve. On the other hand, one should note that if $\frac{\partial^2 v}{\partial r} \frac{\partial \theta}{\partial \theta}$ does not have a unique value for r = 0, $\theta = \theta_{S_0}$, the stepwise integration by the method of characteristics will also require careful examination. A thorough investigation of the mathematical nature of the solution is indeed very interesting and very much desired.

NUMERICAL RESULTS AND DISCUSSION

Numerical integrations have been carried out for the perturbation equations as outlined in the preceding section. Bodies with initial semivertex angles $\theta_{S_0} = 10^{\circ}$, 20° , and 30° are considered with the free-stream Mach number ranging approximately from the minimum one for attached conical shock wave to a value around 5. It is found that both and & remain manageable practically up to the body surface. Since their values near the body surface are not needed for the determination of the ratio of the curvatures, the series forms (49) were not used. The quantity η approaches a finite value at the body surface and is easily determined in the stepwise integration. Table 1 gives the coefficient functions F, G, and H as well as the values of the variables during the integration of the various cases. In the computation, Kopal's tables (reference 7) have been used as the correct conical solution. The coefficient functions are computed to four places in most cases and in appropriate small steps. The final value of η at the body surface is of particular interest. After conversion to the ratio of the initial radii of curvature according to equation (45), the results are listed in table 2 and plotted as figure 4.

Variation of curvature ratio R_{W_O}/R_{S_O} with Mach number M for given values of θ_{S_O} . It is seen that, for given values of θ_{S_O} , as the Mach number decreases from a fairly high value the ratio R_{W_O}/R_{S_O}

tends to increase until a maximum is reached. Further decrease of the Mach number causes the ratio to come down rapidly, and at least in one case ($\theta_{SO}=20^{\circ}$, M = 1.216) the computation actually gives a negative value at a quite low Mach number. With smaller values of θ_{SO} , the ratio exhibits a more violent change with Mach number in comparison with the cases of larger values of θ_{SO} , though qualitatively the tendency is similar. As is well-known, the conical flow near the nose may be completely subsonic, completely supersonic, or a mixture of the two. The Mach numbers determining the different regimes for the present θ_{S} 's are taken down from reference 7 and marked in figure 4 for comparison. At first one might surmise that perhaps the ratio of R_{WO}/R_{SO} reaches its maximum at the end of the supersonic regime, comes down in the mixed regime, and goes into negative values when flow becomes completely subsonic. This turns out not to be the case.

Zero point of ratio R_{W_O}/R_{S_O} . The zero point of the ratio R_{W_O}/R_{S_O} lies very close to, though is not exactly coincident with, the critical Mach number below which a completely subsonic flow prevails. On the other hand, it does not seem justifiable to conclude too much in this respect. The vanishing of R_{WO}/R_{SO} means an infinite curvature of the shock wave, which may be recalled to be contradictory to the assumption in deriving the boundary conditions (cf. equation (25)). Consequently, the effects of higher-order terms will enter in deciding the radius of curvature. Indeed, a similar phenomenon has been found in the two-dimensional case and investigated to some extent by various authors. Crocco (reference 1) was the first to notice the appearance of a theoretical negative curvature ratio in two-dimensional shocks. He conjectured that detachment might start at this stage because of the unlikely physical picture. Guderley (reference 10) studied the behavior of flows qualitatively by examining the hodograph plane. For a straight wedge with a shoulder, he claimed that the shock would start with infinite, but not negative, curvature when the wedge angle lies beyond the Crocco point. The solution for a curved wedge was assumed to be similar in nature to that of the straight wedge with a shoulder. Recent works by Thomas (references 11 and 12) further indicate that as soon as a subsonic regime begins to appear behind the shock, the shock must exhibit a singular behavior, even though the body is of regular shape. The axially symmetrical case is even more complicated. As a matter of fact, the assumption of a regular shock-wave shape near the vertex is likely to be untrue for all Mach numbers, according to an investigation presented in appendix B. The present results in the subsonic range must therefore be interpreted with reserve. The zero point is seen to occur only when the flow behind the initial shock is entirely subsonic.

Comparison with two-dimensional case. A comparison of the results in the supersonic regime with the corresponding ones in two-dimensional flow over a wedge may next be made. Thomas' results (reference 3) are converted into the notations adopted in this report and plotted as figure 5. The general tendency is seen to be similar. For larger Mach

numbers the difference in the ratio of curvatures in the two cases becomes small. As the lowest Mach number for attached straight shock is higher in the two-dimensional case, deviation is large for the lower Mach numbers. The variation of the ratio of curvatures is also much less violent than in the axially symmetrical case. For instance, for $\theta_{\rm S_O}=10^{\rm O}$, the ratio of curvatures reaches a maximum of 4.5 in the two-dimensional case but goes beyond 40 in the axially symmetrical one.

Experimental data have not been available to the authors for checking the theory. The greatest interest, besides checking the theory for its applicability to concave bodies, is, of course, the extension of the results to convex bodies. The behavior in the subsonic regime requires more theoretical study as well as a thorough experimental investigation, for which the technique is admittedly much more difficult as the delicate nature of transonic flow enters the picture. It is hoped that a comparison with experimental data may soon be made to evaluate the usefulness of the report.

On the report itself, the theoretical difficulty of the singular point at $\theta=\theta_{S_O}$ and the exact nature of the higher-order perturbations deserve further examination. If the first-order perturbation, as presented here, is found to agree well with experiments, more computation is needed for a conclusive knowledge of the variation of R_{W_O}/R_{S_O} . The curve for $\theta_{S_O}=10^O$ in figure 4 can only be regarded as tentative because of the small number of computed points and the violent variation. At least one or two intermediate values of θ_{S_O} between 10^O and 20^O should be computed so that interpolation may become possible for practical purposes. The limiting case for $M^O\longrightarrow \infty$ is also of sufficient interest to be included in any subsequent computation.

Massachussetts Institute of Technology Cambridge, Mass., June 21, 1949

APPENDIX A

COEFFICIENTS IN EXPANSION (51)

The first three coefficients in expansion (51) are as follows:

$$f_{10} = \frac{1}{2\gamma}$$

$$f_{11} = \frac{1}{4y} \cot \theta_s$$

$$f_{12} = -\frac{1}{2\gamma} \left[1 + \frac{1}{4} \cot^2 \theta_{s_0} + \frac{4/3}{\gamma - 1} \frac{u_{s_0}^2/c^2}{1 - \left(u_{s_0}^2/c^2\right)} \right]$$

$$f_2 = \frac{2\gamma - 1}{\gamma}$$

$$f_{30} = \frac{\gamma - 1}{4\gamma} \frac{\rho^{o}}{\rho_{s_{o}}} \frac{1 - (u_{s_{o}}^{2}/c^{2})}{u_{s_{o}}/c}$$

$$f_{31} = \frac{\gamma - 1}{8\gamma} \frac{1 - (u_{s_0}^2/c^2)}{u_{s_0}/c} \frac{\rho^0}{\rho_{s_0}} \cot \theta_{s_0}$$

$$f_{32} = -\frac{\gamma - 1}{4\gamma} \frac{1 - \left(u_{s_0}^2/c^2\right)}{u_{s_0}/c} \frac{\rho^0}{\rho_{s_0}} \left[\frac{1}{4} \cot^2 \theta_{s_0} + \frac{2\gamma - (8/3)}{\gamma - 1} \frac{u_{s_0}^2/c^2}{1 - \left(u_{s_0}^2/c^2\right)} \right]$$

$$g_{10} = -3 + \frac{2}{\gamma} \frac{u_{s_0}^2/c^2}{1 - (u_{s_0}^2/c^2)}$$

$$g_{ll} = 0$$

$$g_{12} = -\frac{2}{\gamma - 1} \frac{u_{s_0}^2/c^2}{1 - (u_{s_0}^2/c^2)} \left[10 - \frac{2}{\gamma} + 6 \frac{\gamma - 1}{\gamma} \frac{u_{s_0}^2/c^2}{1 - (u_{s_0}^2/c^2)} \right]$$

$$g_{20} = -\cot \theta_{s_0}$$

$$g_{21} = 2 \cot \theta_{s_0} \csc 2\theta_{s_0} + \frac{\frac{1}{\gamma(\gamma - 1)}}{\frac{1 - (u_{s_0}^2/c^2)}{1 - (v_{s_0}^2/c^2)}}$$

$$g_{22} = -\cot \theta_{s_0} \left[\frac{2^{l_1} + (2/\gamma)}{\gamma - 1} \frac{u_{s_0}^2/c^2}{1 - (u_{s_0}^2/c^2)} + \csc^2 \theta_{s_0} \right]$$

$$g_{30} = -\frac{2\gamma - 1}{\gamma} \frac{\rho^0}{\rho_{B_0}} \frac{u_{B_0}}{c}$$

$$g_{31} = 0$$

$$g_{32} = -\frac{\rho^{o}}{\rho_{s_{o}}} \frac{u_{s_{o}}}{c} \left[-\frac{4\gamma - 1}{\gamma} - 2 \cot^{2}\theta_{s_{o}} + 4 \cot \theta_{s_{o}} \csc 2\theta_{s_{o}} + \frac{-8\gamma + 20 - (10/\gamma)}{\gamma - 1} \frac{u_{s_{o}}^{2}/c^{2}}{1 - (u_{s_{o}}^{2}/c^{2})} \right]$$

$$h_{10} = \frac{1}{7} \frac{\rho_{s_0}}{\rho^0} \frac{u_{s_0}/c}{1 - (u_{s_0}^2/c^2)}$$

$$h_{11} = \frac{1}{2\gamma} \frac{\rho_{s_0}}{\rho^0} \frac{u_{s_0}/c}{1 - (u_{s_0}^2/c^2)} \cot \theta_{s_0}$$

$$h_{12} = \frac{1}{\gamma} \frac{\rho_{s_0}}{\rho^0} \frac{u_{s_0}/c}{1 - \left(u_{s_0}^2/c^2\right)} \left[\frac{2 + 10\gamma}{\gamma - 1} - \frac{1}{4} \cot^2 \theta_{s_0} + \frac{(8/3) - 6\gamma}{\gamma - 1} \frac{u_{s_0}^2/c^2}{1 - \left(u_{s_0}^2/c^2\right)} \right]$$

$$h_{20} = -\frac{2}{\gamma} \frac{\rho_{B_0}}{\rho^0} \frac{u_{B_0} | c}{1 - (u_{B_0}^2 | c^2)}$$

$$h_{21} = -\frac{8}{\gamma - 1} \frac{\rho_{s_0}}{\rho^0} \frac{u_{s_0}/c}{1 - (u_{s_0}^2/c^2)} \cot \theta_{s_0}$$

$$h_{22} = -\frac{2}{\gamma} \frac{\rho_{B_0}}{\rho^0} \frac{u_{B_0}/c}{1 - (u_{B_0}^2/c^2)} \left[-\frac{6\gamma^2 + 6\gamma + 4}{(\gamma - 1)^2} \frac{u_{B_0}^2}{1 - (u_{B_0}^2/c^2)} - \frac{4\gamma}{\gamma - 1} \cot \theta_{B_0} \left(\cot \theta_{B_0} + \csc 2\theta_{B_0} \right) - \frac{3\gamma - 1}{\gamma - 1} \right]$$

$$h_{30} = \frac{\gamma - 1}{2\gamma}$$

$$h_{31} = \frac{\gamma - 1}{\mu_{\gamma}} \cot \theta_{s_0}$$

$$h_{32} = \frac{\gamma - 1}{2\gamma} \left[-1 - \frac{1}{4} \cot^2 \theta_{s_0} + \frac{8\gamma^2 - \frac{28}{3} \gamma - \frac{20}{3}}{(\gamma - 1)^2} \frac{u_{s_0}^2/c^2}{1 - (u_{s_0}^2/c^2)} \right]$$

APPENDIX B

FURTHER DISCUSSION OF PERTURBATION SCHEME

AND SINGULARITY AT NOSE

If a better approximation is desired, it is necessary to look into the nature of the perturbations more closely. Still using the polar coordinates, assume now that each hydrodynamic quantity is representable in a series expansion as follows:

$$u/c = \sum_{n=0}^{\infty} r^n u_n(\theta)$$
 (B1)

$$v/c = \sum_{n=0}^{\infty} r^n v_n(\theta)$$
 (B2)

$$\rho = \sum_{n=0}^{\infty} r^n \rho_n(\theta)$$
 (B3)

while equation (4) serves as the relation among p, ρ , u, and v. The conical solution and the perturbation (13) may be interpreted to be the first two terms of the above series. One then may calculate:

$$\frac{\partial \mathbf{r}}{\partial \mathbf{p}} = \sum_{n=0}^{\infty} \mathbf{p}_{n} \mathbf{r}^{n} \tag{B4}$$

$$\frac{\partial p}{\partial \theta} = \sum_{n=0}^{\infty} p_{\theta n} r^n$$
 (B5)

$$\frac{1}{\rho} = \sum_{n=0}^{\infty} \rho_{-n} r^n \tag{B6}$$

where

$$p_{rn} = -\frac{\gamma - 1}{\gamma} \left\{ \sum_{k+j=n} \left[\rho_k \sum_{l+m=j} \left(u_l u_{m+1} + v_l v_{m+1} \right) + \frac{k+1}{2} \rho_{k+1} \sum_{l+m=j} \left(u_l u_m + v_l v_m \right) \right] - \frac{n+1}{2} \rho_{n+1} \right\}$$
(B7)

$$p_{n\theta} = -\frac{\gamma - 1}{\gamma} \left\{ \sum_{k+j=n} \left[\rho_k \sum_{l+m=j} \left(u_l u_m' + v_l v_m' \right) + \frac{\rho_k'}{2} \sum_{l+m=j} \left(u_l u_m + v_l v_m \right) \right] - \frac{\rho_n'}{2} \right\}$$
(B8)

$$\rho_{-0} = \frac{1}{\rho_{0}}$$

$$\sum_{l+m=n} \rho_{-l} \rho_{m} = 0 \qquad (n \neq 0)$$
(B9)

the primed quantities being the derivatives with respect to $\,\theta$. It can be shown that the expression for $\,\rho_{-k}\,$ in equation (B9) is, in general, of the form

$$\rho_{-k} = \sum_{l+m=k} f_{kl}(\rho_0) \rho_l \rho_m$$
 (B10)

with $f_{kl}(\rho_0)$ a function of ρ_0 only. After substitution into the fundamental equations (1) to (3), there follows by equating the

coefficients of the kth power of $\, \mathbf{r} \,$ a set of equations for the (k+1)th-order perturbations:

$$\sum_{l+m=k} \left[u_l u_{m+1}(m+1) + p_{m} \rho_{-l} \right] + \sum_{l+m=k+1} v_l \left(u_m' - v_m \right) = 0 \quad (B11)$$

$$\sum_{l+m=k} u_{l} v_{m+1}(m+1) + \sum_{l+m=k+1} \left[v_{l} (u_{m} + v_{m}') + p_{\theta m} \rho_{-l} \right] = 0 \quad (B12)$$

$$\sum_{l+m=k} \left[\rho_l \mathbf{v_m'} + \rho_l' \mathbf{v_m} + (n+2) \rho_l \mathbf{u_m} + \rho_l \mathbf{v_m} \cot \theta \right] = 0$$
 (B13)

In more explicit form, equations (Bl1) to (Bl3) may be rewritten as

$$v_{o}u_{k+1}' + \frac{k\gamma + 1}{\gamma} u_{o}u_{k+1} - \frac{2\gamma - 1}{\gamma} v_{o}v_{k+1} + (k + 1) \frac{p_{o}}{\rho_{o}^{2}} \rho_{k+1} =$$

$$Q_{1k}(u_{o}, v_{o}, \rho_{o}, \dots, u_{k}, v_{k}, \rho_{k})$$
(B14)

$$-\frac{\gamma - 1}{\gamma} u_{o} u_{k+1}! + \left(\frac{1}{\gamma} v_{o} - \frac{\gamma - 1}{\gamma} u_{o} \frac{\rho_{o}!}{\rho_{o}}\right) u_{k+1} + \frac{1}{\gamma} v_{o} v_{k+1}! + \frac{1}{\gamma} v_{o} v_{o} v_{k+1}! + \frac{1}{\gamma} v_{o} v_{o$$

$$\left[(k + 2)u_{0} + \frac{1}{\gamma} v_{0}' - \frac{\gamma - 1}{\gamma} \frac{\rho_{0}'}{\rho_{0}} v_{0} \right] v_{k+1} + \frac{p_{0}}{\rho_{0}^{2}} \rho_{k+1}' -$$

$$\frac{p_0}{\rho_0^2} \frac{\rho_0'}{\rho_0} \rho_{k+1} = Q_{2k} (u_0, v_0, \rho_0, \dots, u_k, v_k, \rho_k)$$
 (B15)

$$(k + 3)u_{k+1} + v_{k+1}' + \left(\frac{\rho_0'}{\rho_0} + \cot \theta\right)v_{k+1} + \frac{v_0}{\rho_0}\rho_{k+1}' + \left[\frac{v_0'}{\rho_0} + \frac{u_0}{\rho_0}(k + 3) + \frac{v_0'}{\rho_0}\right]$$

$$\frac{\mathbf{v}_{0}}{\rho_{0}} \cot \theta \rho_{k+1} = Q_{3k}(\mathbf{u}_{0}, \mathbf{v}_{0}, \rho_{0}, \dots, \mathbf{u}_{k}, \mathbf{v}_{k}, \rho_{k})$$
(B16)

where Q_{1k} , Q_{2k} , and Q_{3k} contain the lower-order functions. The Q functions turn out to be zero only for the zeroth- (the conical) and the first-order functions. However, in the general discussion of the kth-order solution, it is only necessary to pick out the terms with strongest singularity.

Again, equations (Bl4) to (Bl6) may be put into standard form in parallel with the previous study. Thus,

$$u_{k+1}' = F_{k1}u_{k+1} + F_{k2}v_{k+1} + F_{k3}\rho_{k+1} + \Delta_{F,k}$$
 (B17)

$$v_{k+1}' = G_{k1}u_{k+1} + G_{k2}v_{k+1} + G_{k3}\rho_{k+1} + \Delta_{G,k}$$
 (B18)

$$\rho_{k+1}' = H_{k1}u_{k+1} + H_{k2}v_{k+1} + H_{k3}\rho_{k+1} + \Delta_{H,k}$$
(B19)

where the \triangle 's represent combinations of lower-order functions, and the coefficients F, G, and H are given in the following expressions:

$$F_{k1} = -\frac{k\gamma + 1}{\gamma} \frac{u_0}{v_0}$$

$$F_{k2} = \frac{2\gamma - 1}{\gamma}$$

$$F_{k3} = -\frac{k + 1}{v_0} \frac{p_0}{\rho_0^2}$$
(B20)

$$G_{kl} = \frac{\left(k + 3\right)\frac{p_{o}}{\rho_{o}} - \left[\frac{1}{7}v_{o}^{2} - \frac{\gamma - 1}{\gamma}\frac{\rho_{o}'}{\rho_{o}}u_{o}v_{o} + \frac{(k\gamma + 1)(\gamma - 1)}{\gamma^{2}}u_{o}^{2}\right]}{\frac{1}{\gamma}v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$G_{k2} = \frac{\frac{p_{o}(\rho_{o}')}{\rho_{o}(\rho_{o}')} + \cot \theta - v_{o}(k+2)u_{o} + \frac{1}{\gamma}v_{o}' - \frac{\gamma-1}{\gamma}\frac{\rho_{o}'}{\rho_{o}}v_{o} - \frac{(2\gamma-1)(\gamma-1)}{\gamma^{2}}u_{o}}{\frac{1}{\gamma}v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$
(B21)

$$G_{k3} = \frac{p_0}{\rho_0^2} \frac{v_0' + v_0 \left(\frac{\rho_0'}{\rho_0} + \cot \theta\right) + \left(2 + \frac{k+1}{\gamma}\right) u_0}{\frac{1}{\gamma} v_0^2 - \frac{p_0}{\rho_0}}$$

$$H_{kl} = \rho_0 \frac{-\frac{(k+2)}{\gamma} v_0 - \frac{\gamma - 1}{\gamma} \frac{\rho_0!}{\rho_0} u_0 + \frac{(k\gamma + 1)(\gamma - 1)}{\gamma^2} \frac{{u_0}^2}{v_0}}{\frac{1}{\gamma} v_0^2 - \frac{P_0}{\rho_0}}$$

$$H_{k2} = \rho_{o} \frac{\left(k+2\right)u_{o} + \frac{1}{\gamma} v_{o}! - \left(\frac{\rho_{o}!}{\rho_{o}} + \frac{1}{\gamma} \cot \theta\right)v_{o} - \frac{\left(2\gamma-1\right)(\gamma-1)}{\gamma^{2}} u_{o}}{\frac{1}{\gamma} v_{o}^{2} - \frac{p_{o}}{\rho_{o}}}$$

$$\frac{H_{k3}}{\frac{1}{\gamma}} = \frac{-\frac{p_0}{\rho_0} \left[\frac{\rho_0!}{\rho_0} - \frac{(k+1)(\gamma-1)}{\gamma} \frac{u_0}{v_0} \right] - \frac{1}{\gamma} v_0 \left[v_0! + (k+3)u_0 + v_0 \cot \theta \right]}{\frac{1}{\gamma} v_0^2 - \frac{p_0}{\rho_0}}$$

(B22)

The point $\theta=\theta_{S_O}$ is seen to remain a pole for the coefficients F_{kl} , F_{k3} , F_{k1} , and F_{k3} as in the first-order perturbation. Proceeding along a similar line, one writes down the indicial equation for the index α_k as

$$\begin{vmatrix} f_{k1,0} - \alpha_k & 0 & f_{k3,0} \\ 0 & -\alpha_k & 0 \\ h_{k1,0} & 0 & h_{k3,0} - \alpha_k \end{vmatrix} = 0$$
 (B23)

where f_{kl} , and so forth are the values of the regularized functions $(\theta - \theta_{SO})F_{kl}$, and so forth (cf. equation (46)) at $\theta = \theta_{SO}$. Hence,

$$-\alpha_{k}\left[\alpha_{k}^{2} - \alpha_{k}(f_{kl,0} + h_{k3,0}) + f_{kl,0}h_{k3,0} - f_{k3,0}h_{kl,0}\right] = 0 \quad (B24)$$

It is found by using equation (39) that

$$f_{k1,0} = \frac{k\gamma + 1}{2\gamma}$$

$$f_{k3,0} = \frac{k+1}{2} \frac{p_{s_0}}{p_{s_0}^{2} u_{s_0}}$$

$$h_{k1,0} = \frac{(k\gamma + 1)(\gamma - 1)}{2\gamma^2} \frac{p_{s_0}^{2} u_{s_0}}{p_{s_0}}$$

$$h_{k3,0} = \frac{(k+1)(\gamma - 1)}{2\gamma}$$
(B25)

The roots of the indicial equation (B24) then are given as

$$\alpha_{k} = 0$$
, 0, $\frac{2k+1}{2} - \frac{k}{2\gamma}$

The last root is positive as long as $\gamma>\frac{k}{2k+1}$, a condition which is satisfied by any real gas. Thus the complementary function of differential equations (B17) to (B19) near $\theta=\theta_{S_0}$ may be put down in series form

$$\mathbf{u}_{k+1} = \sum_{n=0}^{\infty} \; \mathbf{a}_{\mathbf{u}_{k},n} \Big(\theta \; - \; \theta_{s_{0}} \Big)^{n} \; + \; \sum_{n=0}^{\infty} \; \mathbf{b}_{\mathbf{u}_{k},n} \Big(\theta \; - \; \theta_{s_{0}} \Big)^{n+\alpha_{k}} \; + \;$$

$$\log_{e} \left(\theta - \theta_{s_{o}}\right) \sum_{n=0}^{\infty} c_{u_{k},n} \left(\theta - \theta_{s_{o}}\right)^{n}$$
 (B26)

and so on. As in the first-order-perturbation case, the solution for v_{k+1} is again one degree higher in $(\theta - \theta_{s_0})$ in the b and c series. In the complementary function, therefore, even for the higher-order functions, nothing worse than a logarithmic term occurs. On the other hand, the particular integrals associated with equations (B17) to (B19) due to the presence of the lower-order functions in the Q functions of equations (Bl4) to (Bl6) have stronger singularities at $\theta = \theta_{s_0}$, because each lower-order function contains at least a logarithmic term. To see this, let equations (B17) to (B19) be transformed into the equivalent third-order equation for any of its variables, say uk+1 (or ho_{k+1}) as it has been shown to behave worse near the singularity than v_{k+1} . Let $N_k(u_0, v_0, \rho_0, \dots, u_k, v_k, \rho_k)$ be the resultant nonhomogeneous term, arising out of the Q functions through the transformation process. Then if $u_{k+1,1}$, $u_{k+1,2}$, and $u_{k+1,3}$ are the complementary functions represented by the three series in equation (B26), the general solution is obtainable by a variation of constant method. Assuming the solution to be

$$v_{k,1}u_{k+1,1}, v_{k,2}u_{k+1,2}, v_{k,3}u_{k+1,3}$$

one finds

$$V_{k,1} = \int \frac{W(u_{k+1,2}, u_{k+1,3})}{W(u_{k+1,1}, u_{k+1,2}, u_{k+1,3})} N d\theta$$

$$V_{k,2} = \int \frac{W(u_{k+1,3}, u_{k+1,1})}{W(u_{k+1,1}, u_{k+1,2}, u_{k+1,3})} N d\theta$$

$$V_{k,3} = \int \frac{W(u_{k+1,1}, u_{k+1,2})}{W(u_{k+1,1}, u_{k+1,2})} N d\theta$$
(B27)

where W stands for the Wronskian. To study the behavior near the singularity, only the dominant terms are of importance. From equation (B26) it is seen that near the singularity

$$u_{k+1,1} \approx \text{Constant}, \quad u_{k+1,2} \approx \left(\theta - \theta_{s_0}\right)^{\alpha_k}, \quad u_{k+1,3} \approx \log\left(\theta - \theta_{s_0}\right)$$

Hence,

$$\begin{split} \mathbb{W} \Big(u_{k+1,1}, u_{k+1,2}, u_{k+1,3} \Big) &\approx \begin{cases} 1 & \left(\theta - \theta_{s_0} \right)^{\alpha_k} & \log \left(\theta - \theta_{s_0} \right) \\ 1 & \left(\theta - \theta_{s_0} \right)^{\alpha_k - 1} & \frac{1}{\theta - \theta_{s_0}} \\ 1 & \left(\theta - \theta_{s_0} \right)^{\alpha_k - 2} & \frac{1}{\left(\theta - \theta_{s_0} \right)^2} \end{cases} \\ &\approx \left(\theta - \theta_{s_0} \right)^{\alpha_k - 3} \\ \mathbb{W} \Big(u_{k+1,1}, u_{k+1,2} \Big) &\approx \left(\theta - \theta_{s_0} \right)^{\alpha_k - 1} \\ \mathbb{W} \Big(u_{k+1,2}, u_{k+1,3} \Big) &\approx \left(\theta - \theta_{s_0} \right)^{\alpha_k - 1} \log \left(\theta - \theta_{s_0} \right) \\ \mathbb{W} \Big(u_{k+1,3}, u_{k+1,1} \Big) &\approx \left(\theta - \theta_{s_0} \right)^{-1} \end{split}$$

NACA IN 2505 39

After substitution of these dominant terms in equation (B27), there follows

$$V_{k,1}u_{k+1,1} \approx \int (\theta - \theta_{s_0})^2 \log_e (\theta - \theta_{s_0}) N d\theta$$

$$V_{k,2}u_{k+1,2} \approx (\theta - \theta_{s_0})^{\alpha_k} \int (\theta - \theta_{s_0})^{2-\alpha_k} N d\theta$$

$$V_{k,3}u_{k+1,3} \approx \log_e (\theta - \theta_{s_0}) \int (\theta - \theta_{s_0})^2 N d\theta$$
(B28)

It remains next to find out the singular behaviour of N in the neighborhood of θ - θ_{S_0} . In the process to reduce to the standard form equations (B17) to (B19), the elimination of v_{k+1} ' or ρ_{k+1} ' from equations (B15) and (B16) involves a multiplication by v_0 . Consequently,

$$\Delta_{\mathrm{F},k} = Q_{\mathrm{lk}}/v_{\mathrm{o}}$$

$$\Delta_{\mathrm{G},k} \approx Q_{\mathrm{lk}} + v_{\mathrm{o}}Q_{\mathrm{2k}}$$

$$\Delta_{\mathrm{H},k} \approx Q_{\mathrm{lk}} + v_{\mathrm{o}}Q_{\mathrm{3k}}$$
(B29)

As v_0 is known to vary as $\left(\theta - \theta_{S_0}\right)$ near the singularity, unless Q_{2k} or Q_{3k} contains terms of higher-order singularity than $Q_{1k}/\left(\theta - \theta_{S_0}\right)^2$ the main contribution to the singularity of N will be Q_{1k} . A closer examination reveals that the Q functions in equations (B14) to (B16) are all combinations of products of the lower-order functions. With the knowledge that the v function is, in general, one degree higher in $\left(\theta - \theta_{S_0}\right)$

than the corresponding $\,u\,$ or $\,\rho\,$ function, the leading terms of the $\,Q\,$ functions must be included in the following expressions:

For Q_{lk},

$$\sum_{l+m=k} \left[u_l u_m(m+1) + p_{rm} \rho_{-l} \right]$$

For Q_{2k},

$$\sum_{l+m=k+1} p_{\theta m} \rho_{-l}$$

For Q_{3k},

$$\sum_{l+m=k} \rho_l u_m$$

At once Q_{3k} may be discarded, for it is at most of the same order as Q_{1k} . To compare Q_{1k} and Q_{2k} , formulas (B7) and (B8) for p_{rm} and $p_{\theta m}$ are needed. Meanwhile, let it be assumed that the higher-order functions have stronger or equally strong singularities than their corresponding lower ones. Then the leading terms must be included in

For Q_{1k}

$$\sum_{l+m=k} \; \rho_{-l} \; \sum_{p+q=m} \; \rho_{p+1} \; \sum_{j=0}^q \; u_j u_{q-j}$$

For Q_{2k},

$$\sum_{l+m=k+1} \rho_{-l} \sum_{p+q=m} \rho_p \sum_{j=0}^{q} u_j' u_{q-j}$$

As the highest terms containing the (k+1)th-order functions are taken out in these expressions, the two summations containing ρ_n become identical and the difference lies in the terms $u_j{}^iu_{q-j}$ and $u_ju_{q-j}.$ No more conclusions can be drawn without further knowledge as to the nature of the solutions u_n .

To fix ideas, consider the second-order equations, the Q functions of which contain the zeroth and first-order functions whose forms are known. The Q functions are as follows:

$$Q_{12} = \frac{\gamma - 1}{\gamma} \left[\frac{\rho_{1}^{2}}{2\rho_{0}^{2}} \left(1 - u_{0}^{2} - v_{0}^{2} \right) + \frac{\rho_{1}}{\rho_{0}} \left(u_{1}u_{0} + v_{1}v_{0} \right) + u_{1}^{2} + v_{1}^{2} \right] - u_{1}^{2} - v_{1} \left(u_{1}^{i} - v_{1} \right)$$

$$Q_{22} = \frac{\gamma - 1}{\gamma} \left[-\frac{1}{2} \frac{\rho_{1}^{2}}{\rho_{0}^{2}} \left(\frac{\rho_{0}^{i}}{\rho_{0}} - \frac{\rho_{1}^{i}}{\rho_{1}} \right) \left(1 - u_{0}^{2} - v_{0}^{2} \right) - \frac{\rho_{1}}{\rho_{0}} \left(\frac{\rho_{0}^{i}}{\rho_{0}} - \frac{\rho_{1}^{i}}{\rho_{1}} \right) \left(u_{1}u_{0} + v_{1}v_{0} \right) + u_{1}u_{1}^{i} + v_{1}v_{1}^{i} + \frac{1}{2} \frac{\rho_{0}^{i}}{\rho_{0}} \left(u_{1}^{2} + v_{1}^{2} \right) \right] - 2u_{1}v_{1} - v_{1}v_{1}^{i}$$

$$Q_{32} = -\rho_{1}v_{1}^{i} - \rho_{1}^{i}v_{1} - \frac{\mu_{0}}{\rho_{1}} u_{1} - \rho_{1}v_{1} \cot \theta$$
(B30)

With u_1 and ρ_1 varying as $\log (\theta - \theta_{S_0})$ near the singularity,

$$Q_{12} \approx \log^{2}(\theta - \theta_{s_{0}})$$

$$Q_{22} \approx \frac{1}{(\theta - \theta_{s_{0}})} \log (\theta - \theta_{s_{0}})$$

$$Q_{32} \approx \log^{2}(\theta - \theta_{s_{0}})$$
(B31)

Thus Q_{12} evidently has a stronger singularity near $\theta = \theta_{s_0}$ than $\left(\theta - \theta_{s_0}\right)^2 Q_{22}$. In this case Δ_{F2} (cf. equation (B29)) contributes most to the function N.

NACA TN 2505

At any rate, proceeding on the discussion of the particular solution, one observes that in twice differentiating equations (B17) to (B19) to arrive at a third-order equation for one dependent variable, the non-homogeneous term N necessarily will contain second derivatives of the Δ functions. The algebraic operations involving the regularized functions f, g, and h during the process do not affect the nature of the singularity. If the second derivative Δ'' is computed from the leading term in the Δ functions, it is permissible to replace N by Δ'' in equations (B28) for order-of-magnitude study. Again, consider the second-order functions: The leading term of the Δ functions is

$$\frac{Q_{12}}{\theta - \theta_{S_0}} \approx \frac{1}{\theta - \theta_{S_0}} \log^2(\theta - \theta_{S_0})$$

Hence,

$$\Delta'' \approx \frac{1}{\left(\theta - \theta_{S_0}\right)^3} \log^2 \left(\theta - \theta_{S_0}\right)$$

By substitution into equation (B28),

$$V_{1,1}u_{2,1} \approx \int \frac{\log^{3}(\theta - \theta_{S_{0}})}{\theta - \theta_{S_{0}}} d\theta$$

$$\approx \log^{4}(\theta - \theta_{S_{0}})$$

$$V_{1,2}u_{2,2} \approx (\theta - \theta_{S_{0}})^{\alpha_{k}} \int \frac{\log^{2}(\theta - \theta_{S_{0}})}{(\theta - \theta_{S_{0}})^{\alpha_{k}+1}} d\theta$$

$$\approx \log^{2}(\theta - \theta_{S_{0}})$$

$$V_{1,3}u_{2,3} \approx \log(\theta - \theta_{S_{0}}) \int \frac{\log^{2}(\theta - \theta_{S_{0}})}{\theta - \theta_{S_{0}}} d\theta$$

$$\approx \log^{4}(\theta - \theta_{S_{0}})$$

$$\approx \log^{4}(\theta - \theta_{S_{0}})$$
(B32)

Thus the second-order function contains terms of the order $\log^{4}(\theta - \theta_{s_{0}})$, whereas the first-order one contains only $\log(\theta - \theta_{s_{0}})$.

NACA TN 2505 43

In view of this evidence, one is led to make the assumptions that the leading term in the singularity for the kth-order function takes the form of powers of $\log (\theta - \theta_{S_0})$, that is,

$$u_k \approx \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k}$$

and that $s_k > s_{k-1}$. Consider the combination $u_j u_{q-j}$ in Q_{lk} ,

$$u_{j}u_{q-j} \approx \left[\log \left(\theta - \theta_{s_{Q}}\right)\right]^{s_{j}+s_{q-j}}$$

while the combination $u_j^{\dagger}u_{q-j}$ in Q_{2k} becomes

$$u_{\mathbf{j}}^{\dagger}u_{\mathbf{q}-\mathbf{j}} \approx \frac{\left[\log \left(\theta - \theta_{s_{0}}\right)\right]^{s}j^{+s}q_{-j}^{-1}}{\theta - \theta_{s_{0}}}$$

Therefore Q_{1k} has a singularity much stronger than $(\theta - \theta_{s_0})^2 Q_{2k}$, and the contribution to the leading term of N is only by Q_{1k} . ascertain what choice of the index j will give a maximum value of s_j + s_{q-j} requires, however, more than the monotonic increasing property assumed. For instance, if the second difference of the sequence sk is assumed to be of the same sign throughout, a positive one requires j = 0and a negative one requires j to be approximately q/2 for $s_j + s_{q-j}$ to attain a maximum. If the former is true for the present case, the highest combination of $u_j u_{q-j}$ would be $u_0 u_q = \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_q}$.

$$Q_{1k} \approx \rho_1 u_k$$

With a similar argument, the leading term of Q1k is then

$$Q_{lk} \approx \rho_l u_k$$

$$\approx \left[\log \left(\theta - \theta_{S_0}\right]^{S_k + 1}$$

Hence,

$$\frac{Q_{lk}}{\theta - \theta_{s_0}} \approx \frac{\left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k + 1}}{\theta - \theta_{s_0}}$$

$$\Delta'' \approx \frac{1}{\left(\theta - \theta_{s_0}\right)^3} \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+1}$$

By substitution into equation (B28)

$$\nabla_{k,1} u_{k+1,1} \approx \int \frac{\left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+2}}{\theta - \theta_{s_0}} d\theta$$

$$\approx \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+3}$$

$$\nabla_{k,2} u_{k+1,2} \approx \left(\theta - \theta_{s_0}\right)^{\alpha_k} \int \frac{\left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+1}}{\left(\theta - \theta_{s_0}\right)^{\alpha_k+1}} d\theta$$

$$\approx \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+1}$$

$$\nabla_{k,3} u_{k+1,3} \approx \log \left(\theta - \theta_{s_0}\right) \int \frac{\left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+1}}{\theta - \theta_{s_0}} d\theta$$

$$\approx \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+3}$$

$$\approx \left[\log \left(\theta - \theta_{s_0}\right)\right]^{s_k+3}$$

If the solutions in equations (B33) hold true, the second difference of s_k is nil as the sequence s_k is now increasing linearly with k. The combination of u_ju_{q-j} then becomes indifferent to choice of j, so the result (B33) has no contradiction. The derivation is thus

justified a posteriori. Formulas (B32) are seen to be given by equations (B33) with k=1, $s_1=1$. One concludes by mathematical induction that for the (k+1)th-order function, its singularity has the leading term $0\left\{\left[\log\left(\theta-\theta_{S_0}\right)\right]^{1+3k}\right\}$.

The nature of the differential equations for the kth-order perturbations as assumed by equations (B1) to (B3) having been clarified, it remains next to investigate the proper boundary conditions and the results thereby arrived at. Generalizing equations (23) and (24) one has

$$\left(\sum_{n=1}^{\infty} \mathbf{r}^{n} \mathbf{u}_{n}, \sum_{n=1}^{\infty} \mathbf{r}^{n} \mathbf{v}_{n}, \sum_{n=1}^{\infty} \mathbf{r}^{n} \rho_{n}\right)_{\theta=\theta_{w}} = \left(\mathbf{u}_{w} - \mathbf{u}_{o}, \mathbf{v}_{w} - \mathbf{v}_{o}, \rho_{w} - \rho_{o}\right)_{\theta=\theta_{w}}$$
(B34)

$$\left(\frac{\sum_{n=0}^{\infty} r^{n}v_{n}}{\sum_{n=0}^{\infty} r^{n}u_{n}}\right)_{\theta=\theta_{S}} = \left(r \frac{d\theta_{S}}{dr}\right)_{\theta=\theta_{S}}$$
(B35)

Since the differential equations must be numerically integrated from the initial point, let equation (B34) be examined first. Expanding into a power series of r near r=0,

$$u_{W} = u_{W} \bigg|_{\theta = \theta_{W_{O}}} + \frac{du_{W}}{d\psi} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}}) + \frac{1}{2} \frac{d^{2}u_{W}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{W_{O}}} (\psi - \theta_{W_{O}})^{2} + \dots + \frac{d^{2}u_{W_{O}}}{d\psi^{2}} \bigg|_{\theta = \theta_{$$

$$\frac{1}{n!} \frac{d^n u_w}{d\psi^n} \bigg|_{\theta = \theta_{W_O}} (\psi - \theta_{W_O})^n + \dots$$
(B36)

Assume now that the shock-wave shape is regular and also representable in power series in r. Then

$$\begin{split} \psi &-\theta_{W_O} = \theta_W - \theta_{W_O} + \tan^{-1} \left(r \frac{d\theta_W}{dr} \right) \\ &= \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^n \theta_{W_O}}{dr^n} r^n + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left(r \frac{d\theta_{W_O}}{dr} \right)^{2n+1} \\ &= \sum_{n=0}^{\infty} \psi_n r^n \end{split}$$

where

$$\psi_{n} = \frac{(-1)^{\frac{n-1}{2}} \left(\frac{d\theta_{W_{0}}}{dr} \right)^{n} + \frac{1}{n!} \frac{d^{n}\theta_{W_{0}}}{dr^{n}} \quad \text{for odd } n}{\psi_{n} = \frac{1}{n!} \frac{d^{n}\theta_{W_{0}}}{dr^{n}} \quad \text{for even } n > 0}$$
(B37)

with $d^n\theta_{W_O}/dr^n$ representing the nth derivative of θ_W evaluated at θ_{W_O} . After substitution equation (B36) becomes

$$\mathbf{u}_{\mathbf{w}} = \sum_{\mathbf{n}=0}^{\infty} \frac{1}{\mathbf{n}!} \frac{\mathbf{d}^{\mathbf{n}} \mathbf{u}_{\mathbf{w}_{0}}}{\mathbf{d} \psi^{\mathbf{n}}} \sum_{\mathbf{k}=0}^{\infty} \sum_{\mathbf{m}_{1}+\mathbf{m}_{2}+\cdots+\mathbf{m}_{n}=\mathbf{k}} \psi_{\mathbf{m}_{1}} \psi_{\mathbf{m}_{2}} \cdots \psi_{\mathbf{m}_{n}} \mathbf{r}^{\mathbf{k}}$$

with $d^n u_{w_0}/dr^n$ likewise representing the nth derivative of u_w evaluated at θ_{w_0} . Regrouping the terms, one gets the expansion of u_w in ascending powers of r,

NACA TN 2505

47

$$u_{W} = \sum_{k=0}^{\infty} \mu_{W,k} r^{k}$$
 (B38)

where

$$\mu_{W,k} = \sum_{m_1 + m_2 + \dots + m_n = k} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n u_{W_0}}{d\psi^n} \psi_{m_1} \psi_{m_2} \dots \psi_{m_n}$$
 (B39)

In a similar way u_0 at $\theta = \theta_w$ is obtained:

$$u_{O} = \sum_{k=0}^{\infty} \mu_{O,k} r^{k}$$
 (B40)

where

$$\mu_{o,k} = \sum_{m_1+m_2+\dots+m_n=k} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n u_{o,o}}{d\theta^n} \theta_{m_1} \theta_{m_2} \dots \theta_{m_n}$$
 (B41)

and, in turn,

$$\theta_{O} = 0$$

$$\theta_{m} = \frac{1}{m!} \frac{d^{n}\theta_{W_{O}}}{dr^{m}}$$
(B42)

with $d^n u_{0,0}/d\theta^n$ representing the nth derivative of u_0 evaluated at θ_{W_0} . With the help of expansions (B38) and (B41) for u and similar ones for v and ρ , the coefficient of r^n in two sides of equation (B34) may be equated. The proper initial point at the shock wave is then readily derived:

$$\left(u_{\mathbf{k}}, v_{\mathbf{k}}, \rho_{\mathbf{k}} \right)_{\theta = \theta_{\mathbf{w}_{\mathbf{O}}}} = \left(\mu_{\mathbf{w}, \mathbf{k}} - \mu_{\mathbf{o}, \mathbf{k}}, v_{\mathbf{w}, \mathbf{k}} - v_{\mathbf{o}, \mathbf{k}}, w_{\mathbf{w}, \mathbf{k}} - \omega_{\mathbf{o}, \mathbf{k}} \right)_{\theta = \theta_{\mathbf{w}_{\mathbf{O}}}}$$
(B43)

NACA TN 2505

In equation (B43) the ν 's and ω 's are the coefficients for ν and ρ , respectively, corresponding to the μ 's for ν defined by equations (B39) and (B41). They are defined in exactly the same manner except that ν is to be replaced by the variable in question.

With the initial point specified by equation (B43), the differential equations may be integrated numerically and the three arbitrary constants in the series form near the singular point $\theta = \theta_{S_O}$ determined. Consider now the quantities when the body is reached. The left-hand side of equation (B35) may be rewritten as

$$\frac{\sum_{n=0}^{\infty} r^n v_n}{\sum_{n=0}^{\infty} r^n u_n} = \sum_{n=0}^{\infty} \chi_n(\theta) r^n$$
(B44)

by defining

$$x_{n} = \sum_{l+m=n} v_{l} u_{-m}$$
 (B45)

and

$$u_{-0} = \frac{1}{u_0}$$

$$\sum_{l+m=n} u_m u_{-l} = 0 \text{ for } n \neq 0$$
(B46)

Each term in X_n therefore contains, in general, quantities of the form $(\theta - \theta_{S_0}) \Big[\log_e \left(\theta - \theta_{S_0} \right) \Big]^k$ near $\theta - \theta_{S_0}$. The important con-

clusion now presents itself: If the shock-wave shape is assumed to be regular, the body shape must have a singular point at the vertex. An expansion of the body shape in power series of r in that neighborhood is not possible. The previous method cannot be used to obtain the higher-order derivatives of $\theta_{\rm S}=\theta_{\rm S}(r)$.

7

The approximate behavior of the singular body shape near the vertex to produce the assumed regular shock may be seen by the following consideration. Writing out the first three terms of equation (B44), one has

$$\left(r \frac{d\theta_{s}}{dr} \right)_{\theta=\theta_{s}} = \frac{v_{o}}{u_{o}} + r_{s} \left(\frac{v_{1}}{u_{o}} - \frac{v_{o}u_{1}}{u_{o}^{2}} \right) + r_{s}^{2} \left[\frac{v_{2}}{u_{o}} - \frac{v_{1}u_{1}}{u_{o}^{2}} - \frac{v_{1}u_{1}}{u_{o}^{2}} - \frac{v_{0}u_{1}}{u_{0}^{2}} - \frac{v_{0}u_{1}}{u_{0}^{2}} \right] + \dots$$

$$(B47)$$

As previously shown,

$$v_{o} \approx 0 \left(\theta - \theta_{s_{o}}\right)$$

$$u_{o} \approx 0(1)$$

$$v_{1} \approx 0 \left[\left(\theta - \theta_{s_{o}}\right) \log_{e} \left(\theta - \theta_{s_{o}}\right)\right] + 0(1)$$

$$u_{1} \approx 0 \left[\log_{e} \left(\theta - \theta_{s_{o}}\right)\right]$$

$$v_{2} \approx 0 \left[\left(\theta - \theta_{s_{o}}\right) \log_{e}^{4} \left(\theta - \theta_{s_{o}}\right)\right] + 0(1)$$

$$u_{2} \approx 0 \left[\log_{e}^{4} \left(\theta - \theta_{s_{o}}\right)\right]$$

Equation (B47) thus becomes

$$\left(\mathbf{r} \frac{d\theta_{s}}{d\mathbf{r}} \right)_{\theta=\theta_{s}} \approx 0 \left(\theta - \theta_{s_{0}} \right) + \mathbf{r}_{s} \left\{ 0(1) + 0 \left[\left(\theta - \theta_{s_{0}} \right) \log_{e} \left(\theta - \theta_{s_{0}} \right) \right] \right\} +$$

$$\mathbf{r}_{s}^{2} \left\{ 0(1) + 0 \left[\left(\theta - \theta_{s_{0}} \right) \log_{e} \left(\theta - \theta_{s_{0}} \right) \right] +$$

$$0 \left[\left(\theta - \theta_{s_{0}} \right) \log_{e}^{2} \left(\theta - \theta_{s_{0}} \right) \right] + 0 \left[\left(\theta - \theta_{s_{0}} \right) \log_{e}^{4} \left(\theta - \theta_{s_{0}} \right) \right] \right\} + \dots$$

or

$$\left(\mathbf{r} \frac{\mathrm{d}\theta_{\mathrm{S}}}{\mathrm{d}\mathbf{r}} \right)_{\theta=\theta_{\mathrm{S}}} \approx 0 \left(\theta - \theta_{\mathrm{S}_{\mathrm{O}}} \right) + \mathbf{r}_{\mathrm{S}} \left\{ 0 \left[\left(\theta - \theta_{\mathrm{S}_{\mathrm{O}}} \right) \log_{\mathrm{e}} \left(\theta - \theta_{\mathrm{S}_{\mathrm{O}}} \right) \right] + 0 (1) \right\} +$$

$$\mathbf{r}_{\mathrm{g}}^{2} \left\{ 0 \left[\left(\theta - \theta_{\mathrm{S}_{\mathrm{O}}} \right) \log_{\mathrm{e}}^{4} \left(\theta - \theta_{\mathrm{S}_{\mathrm{O}}} \right) \right] + 0 (1) \right\} + \dots$$

$$\left(\mathbf{B}^{48} \right)$$

The derivative $\frac{d\theta_s}{dr}\Big|_{\theta=\theta_{S_0}}$ having been shown to be a finite quantity

at the surface, one may assume

$$\theta - \theta_{S_O} \approx \frac{d\theta_S}{dr} \Big|_{\theta = \theta_{S_O}} r_S + \text{Higher-order terms}$$
 (B49)

Hence,

$$r \frac{d\theta_{s}}{dr} \bigg|_{\theta=\theta_{s}} \approx r_{s} \left[0(1) + 0 \left(r_{s} \log_{e} r_{s} \right) \right] +$$

$$r_{s}^{2} \left[0 \left(r_{s} \log_{e}^{\mu_{s}} r_{s} \right) + \dots \right] + \dots$$

$$r \frac{d\theta_s}{dr} \bigg|_{\theta=\theta_s} \approx r_s O(1) + O(r_s^2 \log_e r_s) + O(r_s^3 \log_e^{\mu} r_s) + \dots$$
 (B50)

Equation (B50) indicates that the body surface as defined by $\theta_{\rm S}=\theta_{\rm S}({\bf r})$ must have logarithmic singularities near the vertex. Expression (B49) is also found to lead to no inconsistency.

Conversely, in the usual case when a regular body is given, the shock wave cannot be represented regularly without contradiction. It must have a singularity at the vertex. The nature of the singularity presumably would likewise be logarithmic.

NACA TN 2505 51

The existence of a finite first derivative $d\theta_{\rm g}/dr$ as obtained in the section "Integration of Perturbation Equations" is fortunate. By regarding the perturbation as the asymptotic solution which is correct when $r \longrightarrow 0$, the ratio of the initial radii of curvature may be found in spite of the singularities when higher order is considered. It may be pointed out that the "smallness" of r should be measured by a proper scale, which, in this case, is obviously either $R_{\rm W_O}$ or $R_{\rm S_O}$ neither of which, by hypothesis, should be zero. In fact, one may recall that in the above-mentioned section when the first-order perturbation equations are reduced to dimensionless form, the expansion becomes:

$$\frac{\mathbf{u}}{\mathbf{c}} = \frac{\mathbf{u}_0}{\mathbf{c}} + \frac{1}{2} \frac{\mathbf{r}}{\mathbf{R}_{\mathbf{w}_0}} \, \boldsymbol{\xi}$$

and similar expressions can be obtained for v and ρ . The appearance of the parameter $r/R_{W_{\rm O}}$ verifies the choice of scale stated above.

REFERENCES

- 1. Crocco, Luigi: Singolarita della corrente gassosa iperacustica nell' intorno di una prora a diedro. L'Aerotecnica, t. XVII, fasc. 6, June 1937, pp. 519-534.
- 2. Thomas, T. Y.: On Curved Shock Waves. Jour. Math. and Phys., vol. XXVI, no. 1, April 1947, pp. 62-68.
- 3. Thomas, T. Y.: Calculation of the Curvatures of Attached Shock Waves. Jour. Math. and Phys., vol. XXVII, no. 4, Jan. 1949, pp. 279-297.
- 4. Munk, M. M., and Prim, R. C.: Surface-Pressure Gradient and Shock-Front Curvature at the Edge of a Plane Ogive with Attached Shock Front. Jour. Aero. Sci., vol. 15, no. 11, Nov. 1948, pp. 691-695.
- 5. Lin, C. C., and Rubinov, S. I.: On the Flow behind Curved Shocks.

 Jour. Math. and Phys., vol. XXVII, no. 2, July 1948, pp. 105-129.
- 6. Taylor, G. I., and Maccoll, J. W.: The Air Pressure over a Cone Moving at High Speeds. Proc. Roy. Soc. (London), ser. A, vol. 139, no. 838, Feb. 1, 1933, pp. 278-311.
- 7. Staff of the Computing Section (under the direction of Zdenek Kopal): Tables of Supersonic Flow around Cones. Tech. Rep. No. 1, Center of Analysis, M.I.T., 1947.
- 8. Maccoll, J. W.: The Conical Shock Wave Formed by a Cone Moving at a High Speed. Proc. Roy. Soc. (London), ser. A, vol. 159, no. 898, April 1, 1937, pp. 459-472.
- 9. Ince, E. L.: Ordinary Differential Equations. Dover Publications, 1944.
- 10. Guderley, K. Gottfried: Considerations of the Structure of Mixed Subsonic-Supersonic Flow Patterns. Tech. Rep. No. F-TR-2168-ND, Air Materiel Command, Army Air Forces, Oct. 1947.
- 11. Thomas, T. Y.: On Conditions for Steady Plane Flow with Shock Waves. Jour. Math. and Phys., vol. XXVIII, no. 2, July 1949, pp. 91-98.
- 12. Thomas, T. Y.: The Distribution of Singular Shock Directions. Jour. Math. and Phys., vol. XXVIII, no. 3, Oct. 1949, pp. 153-172.

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND $VARIABLES \quad \xi, \quad \eta, \ AND \quad \zeta$

θ (deg)	F ₁	F3	G _l	G ₂	G ₃	H ₁	H ₂	н ₃	Š	η	5
				$\theta_{B_0} = 10^{\circ}$; u _{so} /c =	0.40; M° =	1.0901			L	
68.653	0.2853	0.2861	-68.2270	-3.82165	-3.7282	-167.25	-9.6312	-9.484	-0.021	0.659	1.660
68	.2957	.2878	-44.0644	-7.7142	-2.4677	-104.452	-19.770	-6.219	037	.751	1.896
67 66	.3115 .3274	.2905 .2932	-29.7930 -22.9179	-7.6336 -7.0077	-1.7233 -1.3655	-70.4940	-19.438	-4.275	066	.906 1.061	2.293 2.689
65	3435	2960	-18.7736	-6.4205	-1.1503	-53.1359 -42.6458	-17.906 -16.454	-3.333 -2.759	100 140	1.214	3.083
64	.3598	.2988	-15.9686	-5.9278	-1.0046	-35.5294	-15.228	-2.365	185	1.365	3.475
63	.3764	.3019	-13.9308	-5.5186	8984	-30.3492	-14.209	-2.074	235	1.515	3.866
63 62	• 3933	.3051	-12.3772	-5.1754	8173	-26.3885	-13.352	-1.848	291	1.515 1.664	4.257
61	.4105	.3085	-11.1506	-4.8840	7528	-23.2526	-12.623	-1.666	352	1.812	4.648
60	.4281	.3119	-10.1561	-4.6336 -4.4158	7004	-20.6999	-11.993	-1.514	418	1.958	5.040
59 58	.4461	.3157	-9.3328	-4.4158	6565	-18.5809	-11.445	-1.385	489	2.103	5.432
20	. 4645	.3196	-8.6397	-4.2244	6193	-16.7912	-10.962	-1.274	565	2.247	5.825
57 56	.4833 .5026	.3237 .3280	-8.0481	-4.0550	5873	-15.2550	-10.531	-1.175	646	2.390	6.219
	.5225	.3324	-7.5374 -7.0922	-3.9040 -3.7686	-•5595 - 53ho	-13.9248	-10.146	-1.087	732	2.531	6.614
55 54	.5428	.3372	-6.7007	-3.6463	5349 5132	-12.7579 -11.7262	-9.7979 -9.4802	-1.007 935	823 919	2.671 2.809	7.010 7.407
53	.5638	.3422	-6.3542	-3-5357	4937	-10.8071	-9.1904	869	-1.019	2.946	7.805
52	.5854	.3474	-6.0453	-3.4354 -3.3440	4762	-9.9824	-8.9258	807	-1.124	3.081	8.204
51	.6077	.3530	-5.7685	-3.3440	4603	-9.2371	-8 <i>.6</i> 801	7 49	-1.234	3.214	8.604
50	.6308	.3589	-5.5192	-3.2606	4458	-8.5611	-8.4535	695	-1.348	3.346	9.005
49 48	.6546	.3650	-5.2937	-3.1843	4325	-7.9435	-8.2425	6 ⁴ 3	-1.467	3.476	9.407
48	.6793	.3716	-5.0889	-3.1147	4204	-7.3762	-8.0448	594	-1.591	3.604	9.810
47 46	.7049	.3785	-4.9023	-3.0511	4092	-6.8452	-7.8607	547	-1.719	3.729	10.213
	•7315	.3858 .3935	-4.7316	-2.9929 -2.9399	3988 3892	-6.3711	-7.6881	502	-1.851	3.852	10.617
45 44	.7592 .7881	4017	-4.5751 -4.4313	-2.8917	3803	-5.9212 -5.5022	-7.5249 -7.3714	458 416	-1.988 -2.129	3.973	11.021
43	.8182	4104	-4.2987	-2.8482	3719	-5.1094	-7.2254	374	-2.274	4.092 4.209	11.831
42	.8497	4196	-4.1763	-2.8089	3641	-4.7402	-7.0875	334	-2.423	4.323	12.236
41	.8828	.4295	-4.0630	-2.7739	3569	-4.3914	-6.9558	294	-2.576	4.435	12.642
40	.9175	•4399	-3.9581	-2.7429	3500	-4.0611	-6.8299	255	-2.733	4.545	13.048
39	.9540	.4511	-3.8606	-2.7159	3436	-3.7471	-6.7094	216	-2.893	4.652	13.454
38	.9925	.4632	-3.7700	-2.6928	3375	-3.4473	-6.5935	177	-3.057	4.757 4.860	13.860
37	1.0333	-4760	-3.6857	-2.6736	3318	-3.1599	-6.4819	137	-3.225	4.860	14.266
36	1.0765 1.1224	4898 Bolie	-3.6071	-2.6575	3265	-2.8838	-6.3745	098	-3.396	4.961	14.672
35 34	1.1714	.5046 .5206	-3.5337 -3.4653	-2.6468 -2.6395	3214 3166	-2.6167 -2.3577	-6.2695 -6.1675	0 <u>59</u>	-3.571	5.060	15.078
33	1.2238	.5380	-3.4014	-2.6363	3120	-2.3711	-6.0678	019 .022	-3.749	5.157	15.484 15.890
32	1.2801	.5569	-3.3417	-2.6374	3078	-2.1052 -1.8581	-5.9700	.064	-3.931 -4.116	5.253 5.347	16.296
31	1.3408	-5774	-3.2859	-2.6430	3037	-1.6145	-5.8729	.107	-4.304	5.440	16.701
30	1.4065	.5998	-3.2337	-2.6532	2998	-1.3734	-5.7767	.152	-4.495	5.532	17.106
29	1.4780	.6244	-3.1849	-2.6532 -2.6685	2962	-1.1332	-5.6805	.199	-4.690	5.532 5.624	17.510
28	1.5561	.6518	-3.1393	-2.6894	2928	8923	-5.5830	.248	-4.888	5.716	17.914
27	1.6420	.6820	-3.0966	-2.7157 -2.7487	2895	6488	-5.4842	.300	-5.089	5.808	18.317
26	1.7370 1.8430	•7157 •7535	-3.0568 -3.0196	2.7407	2864	4011	~5.3833	• 355 • 415	-5.293	5.901	18.719
25 24	1.9621	1025 1084	-2.9849	-2.7887 -2.8364	2834 2806	1460 .1187	-5.2790 -5.1704	9175	-5.501	5.996 6.094	19.120
23	2.0972	.7964 .8455	-2.9527	-2.8927	2780	.3968	-5.0554	•479 •549	-5.712 -5.927	6.196	19.519
22	2,2521	.9022	-2.9227	-2.9588	2754	.6928	-4.9328	.628	-6.145	6.303	20.313
21	2,4322	.9684	-2.8948	-3.0360	2730	1.0136	-4.8007	.717	-6.367	6.416	20.706
20	2,6446	1.0472	-2.8693	-3.1257	2708	1.3655	-4.6555	.820	-6.593	6.537	21.095
19	2.8998	1.1422	-2.8457	-3.2304	2 <i>6</i> 86	1.7619	-4.4951	.940	-6.824	6.669	21.479
18	3.2135	1.2598	-2.8240	-3.3523	2666	2.2196	-4.3146	1.083	-7.059	6.814	21.856
17	3.6101	1.4091	-2.8044	-3.4947	2648	2.7652	-4.1085	1.261	-7.300	6.975	22,225
16	4.1304 4.8474	1.6060	-2.7867	-3.6617	2631	3.4423	-3.8690	1.491	-7.547	7.157	22.582
15 14	5.9071	1.8781 2.2819	-2.7710 -2.7574	-3.8588	2616	4.3299 5.58h5	-3.5870	1.801	-7.800	7.365	22,922
13	7.6499		-2.7461	-4.0955 -4.3741	2602 2590	5.5845 7.5661	-3.2489 -2.8319	2.254 2.983	-8.061	7.607	23,239
	11.0961	4.2683	-2.7371	-4.7159	2580	11.3486	-2.3105	4.408	-8.331 -8.612	7.891 8.231	23.524 23.764
	21.3433	8.1999	-2.7312	-5.1383	2574	22.3217	-1.6397	8.597	-8.907	8.645	23.934
10	8	80	-2.7289	-5.6713	2571	80		ω ω		9.156	
		'	L ' _ '		L		1_,	1	1	1	1

NACA_

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND VARIABLES $\xi,~\eta,~AND~\zeta$ - Continued

θ				<u> </u>	G.	н ₁	н ₂	н ₃	<u> </u>	η	5
(deg)	F ₁	F3	G ₁	G ₂	G3					1	
					θ ₈₀ = 10°; 1	u _{so} /c = 0.55	; M- = 1.09	-	-		
39.708 39.50 50 50.50 50 50.50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.8848 .8944 .9161 .9372 .9784 .0016 1.0238 1.0466 1.0700 1.1441 1.1975 1.3547 1.3825 1.4545 1.5413 2.0688 2.4429 2.62598 2.62598 3.5937 4.8333 5.895	0.2585 .2602 .2673 .210 .2714 .2866 .2856 .28510 .2954 .3014 .3259 .3379 .3379 .3379 .3379 .3491 .4931 .4931 .4931 .4931 .4937 .5267 .5664 .7348 .8348 .936	-55.829 -57.0831 -15.989 -12.825 -10.8121 -8.389 -7.9.825 -10.8121 -8.389 -7.566944 -5.566944 -5.566946 -3.3894 -3.3895 -3.3895 -3.3895 -3.3895 -3.3895 -3.77023 -2.5949 -2.5997	-9.408 -17.678 -14.435 -14.435 -12.626 -11.139 -9.264 -8.547 -7.544 -6.620 -5.5375 -1.8563 -1.5582 -1.5622 -1.5622 -1.57622	-8.246 -5.759 -3.539 -2.631 -2.123 -1.794 -1.562 -1.389 -1.255 -1.147 -1.059 -2.23 -8.25 -6824 -6323 -5908 -5908 -5908 -5908 -4763	-151.086 -98.615 -98.615 -75.704 -39.218 -30.244 -24.305 -20.521 -17.546 -15.236 -13.383 -11.8803 -7.6950 -6.2890 -5.1392 -4.1691 -3.3285 -2.5818 -1.937 -1.2745 -6.680 -1.999 -4.724 -1.6522 -1.6548 -2.999 -4.724 -2.999 -4.724 -2.999 -4.724 -2.999 -4.724 -2.999	-6.388 -48.100 -47.288 -38.138 -44.128 -36.118 -36.118 -36.118 -36.119 -24.710	-23.345 -16.165 -9.731 -7.071 -5.576 -4.599 -3.905 -2.638 -2.638 -2.628 -1.5931 -1.3273 -1.1067 -9180 -75028 -3360 -1.5931 -1.3273 -1.1067 -9180 -75028 -2.4652 -3360 -2.2117 -0899 -2.2679 -2.2679 -2.2679 -2.2679 -2.2679 -2.2679 -2.2679 -2.2679 -2.2679 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2689 -2.2695	-0.023078130192265349550667795 -1.422 -1.806 -2.724 -3.260 -3.850 -5.196 -5.196 -6.617 -7.661 -8.610 -9.6716 -11.880 -13.123 -11.880	1.688 2.688 3.516 3.688 3.516 3.688 3.516 3.688 3.516 3.688 3.516 3.688	5.148 5.789 9.908 10.908 14.081 14.588 17.598 21.59
15 14 13 12 11	4.833 5.895 7.639 11.088 21.338	1.095 1.330 1.719 2.488 4.781	-2.4753 -2.4456 -2.4209 -2.4013 -2.3879	-4.1968 -4.4271 -4.7295 -5.1301	3584 3528 3482 3446 3422	9.559 12.947 19.435 38.260	-6.177 -5.565 -4.838 -3.944 -2.804	1.577 2.062 -2.829 4.295 8.532	-17.39 -19.01 -20.75 -22.62 -24.65	44.94 48.17 51.76 55.83 60.54 66.10	105.92 109.97 113.64 116.76 119.01
				θ ₈₀ 1	= 10°; u _{so} /c	= 0.70; M ^o	2. 387		 		
26.363 26 25.5 24.5 24.5 24.5 22.5 22.5 22.5 21.5 22.5 21.0 20.5 20.5 19.5 18.0 17.5 16.5 16.5 17.0 16.5 17.0 16.5 17.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	1.5806 1.6249 1.6847 1.7453 1.8079 1.8734 1.9423 2.0152 2.0928 2.1757 2.4646 2.3605 2.4646 2.3605 2.4646 2.3707 2.8365 2.95868 3.1542 3.3525 3.7584 4.095 4.8018 5.2774 5.8673 6.6202 7.6171 14.500 21.329 41.755	0.21407 .21827 .22412 .23622 .23665 .24346 .25071 .25845 .26677 .27571 .28538 .29587 .30728 .31866 .36522 .38438 .40562 .42978 .45748 .48964 .52742 .57252 .69550 .78271 .89844 1.0597 1.3007 1.7010 2.4991 4.8887	-20.257 -12.340 -8.0921 -6.1913 -5.0940 -4.3795 -3.8773 -3.5051 -3.2182 -2.8050 -2.6514 -2.233162 -2.2331 -2.1601 -2.0953 -2.0376 -1.9393 -1.8972 -1.8579 -1.7634 -1.7731 -1.6730 -1.6750 -1.6356 -1.6323	-5.6300 -10.045 -10.219 -9.4852 -8.7142 -8.0350 -7.4573 -6.9679 -6.5520 -6.1966 -5.8913 -5.6282 -5.406 -5.2037 -5.0334 -4.8868 -4.7614 -4.6553 -4.5673 -4.16963 -4.4031 -4.3857 -4.4530 -4.3857 -4.4530 -4.7550 -4.4933 -4.7550 -4.4933 -5.1115 -5.3599 -5.6713	-3.9297 -2.7304 -1.9900 -1.5947 -1.3448 -1.1709 -1.0424 -94313 -86416 -7969 -74606 -70077 -66200 -62849 -59925 -57355 -57355 -57355 -575082 -53062 -51259 -46615 -48195 -4670 -43727 -42886 -42139 -41485 -40920 -10445 -40920 -10445 -39774 -39591 -39526	-64, 316 -36, 016 -25, 118 -13, 359 -9, 1126 -6, 2396 -4, 1255 -2, 4707 -1, 1109 -0512 1, 0781 2, 0126 2, 8863 3, 7229 4, 4677 7, 9636 8, 9410 10, 009 11, 198 12, 544 14, 102 15, 945 18, 184 20, 988 24, 645 29, 661 37, 049 49, 168 73, 083 144, 09	-19.717 -35.746 -36.753 -34.364 -31.741 -29.377 -27.325 -25.553 -24.010 -20.658 -21.460 -20.389 -19.421 -18.538 -17.725 -16.260 -15.587 -14.320 -13.106 -12.501 -11.887 -11.256 -10.599 -9.9066 -9.1623 -1.4628 -6.3540 -7.4628 -6.3540 -7.4628 -6.3283 -4.0128	-14.104 -9.5207 -6.6516 -5.0922 -4.0860 -3.3698 -2.3340 -2.3340 -2.3374 -1.7352 -1.4719 -1.278 -1.0255 -82923 -6.44712 -4.6826 -2.9664 -1.2688 -0.4395 -2.1892 -4.0143 -5.5562 -2.0007 -2.4814 -3.1232 -4.0453 -5.562 -2.0007 -2.4814 -3.1232 -4.0455 -5.566	-0.059 -0.059 -0.054 -1.50 -2.15 -2.88 -3.461 -5.610 -7.89 -9.17 -1.054 -1.201 -1.357 -1.523 -1.659 -1.886 -2.291 -2.510 -2.740 -2.981 -3.234 -3.500 -3.778 -4.069 -4.374 -4.694 -5.029 -5.380 -5.748 -6.540	2.617 2.952 3.456 4.980 5.980 6.012 6.535 7.598 8.140 9.251 9.820 10.400 10.992 11.597 12.216 13.303 14.173 14.173 15.581 17.905 18.753 19.659 22.691 23.6691	

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND $\mbox{VARIABLES} \ \ \xi \ , \ \ \eta \ , \ \mbox{AND} \ \ \ \xi \ - \mbox{Continued}$

θ (deg)	F ₁	F ₃	G ₁	G ₂	G ₃	H	н ₂	н3	ţ	η	5
			θ	_{so} = 10°;	u _{so} /c = 0	.80; м° =	3.30				
20.184 20.0 19.75 19.25 19.0 18.75 18.5 17.0 16.5 15.5 15.0 14.5 12.0 13.5 12.0 11.0	2.3954 2.4458 2.51854 2.55856 2.7331 2.8111 2.8925 2.9781 3.0679 3.2625 3.4813 3.7300 4.0163 4.3507 4.7476 5.2276 5.2276 5.2275 6.5792 7.5806 8.972 11.045 14.748	0.1711 .1738 .1776 .1816 .1857 .1900 .1945 .1993 .2044 .2097 .2214 .2346 .2497 .2673 .2879 .3424 .3797 .4272 .4904 .578 .710 .929 1.364 2.699	-9.3750 -7.1249 -5.2801 -4.1433 -3.3839 -2.8469 -2.4506 -2.1482 -1.9113 -1.2390 -1.0914 -9780 -8879 -8143 -7526 -6536 -5764 -5140 -5158 -1926 -14760	-3.8602 -5.5008 -6.4726 -6.826 -6.8278 -6.7030 -6.5500 -6.3867 -6.2228 -5.9112 -5.6337 -5.3943 -5.1922 -5.0254 -4.8920 -4.7908 -4.7908 -4.77110 -4.7836 -4.9035 -5.923 -5.9393 -5.9293	-2.0188 -1.7511 -1.4976 -1.3175 -1.1822 -1.07649911920786158111729666655128513749014701453143884270417440974005	-34.084 -22.652 -12.965 -6.726 -2.335 3.568 5.715 12.003 14.543 16.993 19.497 22.181 25.178 28.644 32.7967 44.694 53.902 67.454 89.692 133.568 263.760	-18.184 -26.212 -31.141 -33.019 -33.514 -33.330 -32.806 -32.109 -31.328 -30.509 -28.866 -27.284 -25.788 -21.703 -20.415 -19.128 -17.817 -16.451 -14.996 -13.417 -11.660 -9.658 -7.318	-9.699 -8.199 -6.767 -5.732 -4.305 -3.7818 -3.9516 -3.9516 -2.0554 -1.128 -3.9034 -1.128 -3.9034 -1.128 -3.9034 -1.163	-0.110129156248216248318355478568665770882 -1.1263 -1.1263 -1.557 -1.716 -1.884 -2.2550 -2.449	2.965 3.091 3.461 3.653 3.842 4.237 4.630 5.428 5.428 5.628 7.539 8.951 10.557 11.830 12.548	13.457 14.057 14.057 15.801 16.691 17.583 18.473 20.236 21.111 22.843 24.553 26.237 27.891 29.510 31.085 32.081 31.085 32.081 33.093 39.143 40.849 41.359
			θ	₆₀ = 10°;	u ₈₀ /c = (0.90; M ^o =	5.42			L	 _
15.0128 15.0 14.8 14.6 14.4 14.2 14.0 13.8 13.6 13.4 13.2 13.0 12.6 12.4 12.2 12.0 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2	4.499 4.511 4.708 4.918 5.144 5.388 5.653 6.617 7.013 7.458 7.964 8.545 9.219 10.0962 12.116 13.556 17.846 21.268 26.388 34.904 51.950 102.985	0.109 .108 .113 .118 .127 .133 .146 .154 .162 .172 .183 .195 .216 .2475 .348 .403 .479 .785 .785 .785 .785 .785 .785 .785 .785	-1.111 -1.020 .850 1.357 1.720 1.985 2.185 2.185 2.185 2.185 2.185 2.744 2.5625 2.744 2.6690 2.744 2.6897 2.9574 2.900 3.055 3.065	-2.808 -2.881 -3.742 -4.239 -4.527 -4.637 -4.826 -4.837 -4.827 -4.827 -4.827 -4.808 -4.775 -4.761 -4.761 -4.8969 -5.305 -5.305 -5.305	-0.824 818 736 674 622 580 516 470 470 451 420 395 377 362 355 355 356 344 340 348 340	22.64 23.44 24.44	-26.13 -26.81 -34.31 -34.31 -44.85 -44.85 -43.88 -44.88 -45.52 -49.58 -30.54 -30.55 -30.56 -3	6.6575.628.466.3647.7.50.68.82.22.97.7.9.50.84.56.47.1.2.2.3.9.7.7.9.50.84.56.47.2.2.3.9.7.7.9.50.84.50.47.3.9.7.7.9.3.50.44.50.47.3.2.3.4.50.7.9.3.2.44.50.47.3.2.3.4.50.7.9.3.2.44.50.47.3.2.3.4.50.7.9.3.2.44.50.47.3.2.3.4.50.7.9.3.2.44.50.47.3.2.3.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.3.2.4.50.47.4.50.40.40.40.40.40.40.40.40.40.40.40.40.40	-0.197198218239260282305352377403457485514564670734816882	3.045 3.051 3.151 3.156 3.157 3.256 3.367 3.5702 4.185 4.185 4.185 4.185 4.185 4.185 5.237 5.568 6.1149 6.34 6.34 6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35	23.375.4 25.234 25.234 25.236 26.515 26.515 26.515 26.515 27.515

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND $VARIABLES \ \ \xi, \ \ \eta, \ AND \ \ \zeta \ - Continued$

θ	P ₁	P3	₀₁	G ₂	G ₃	н ₁	н ₂	H ₃	ţ	η	5
(deg)					20°; u ₅₀ /c	= 0.35: Nº	= 1.216				
		 -						. 150	2.6	0 677	1 020
\$	0.3433 .3524 .3704 .3889 .4077 .4269 .4466 .4669 .5539 .5715 .6019 .6273 .6537 .6737 .6812 .7099 .7415 .8046 .8152 .9155 .9570 .1.0488	0.2694 27114 27146 27129 28198	-10.3845 -9.8845 -9.8845 -1.5568 -1.5668 -1.56	-0.5802 -7826 -1.0679 -1.2567 -1.3858 -1.4763 -1.5864 -1.6191 -1.6422 -1.6806 -1.6758 -1.6758 -1.6769 -1.6748 -1.6749 -1.6749 -1.6712 -1.6711	-0.4806 -14793 -14793 -3479 -3779 -3779 -3779 -3779 -3779 -3779 -3779 -383 -383 -383 -2869 -2861 -2804 -2754 -2754 -2503 -2410 -2754 -2503 -2410 -2810	-24.782 -23.120 -24.782 -23.120 -20.418 -16.264 -16.493 -15.005 -13.729 -12.620 -11.644 -10.717 -9.292 -8.690 -7.518 -7.5	1.725 -2.341 -3.2806 -	-1.458 -1.375 -1.287 -1.126 -1.032951880696758755696569 -	-0.164 -1766 -1799 -1222 -1245 -1291 -1335 -1357 -1401 -1465 -1561 -1563 -1666 -1666 -1666 -1666 -1666 -1666 -1761 -1763 -1761 -1763 -1761 -1763	0.673 .670 .680 .680 .680 .680 .680 .680 .680 .68	1.932 1.938 1.948 1.961 1.975 1.989 2.017 2.031 2.044 2.056 2.056 2.056 2.109 2.109 2.1124 2.135 2.142 2.145 2.147 2.148 2.147 2.148 2.147 2.149 2.149 2.147 2.149 2.147 2.149 2.147 2.148
25 24	3.2766 3.7779 4.4739 5.5105 7.227 10.645 20.861	1.4068 1.6597 2.0376	-2.8536 -2.8387 -2.8260	-2.1758 -2.2584	1829 1820	4.017 5.328 7.395	-2.818 -2.586 -2.322 -2.020	1.357 1.661 2.105 2.826	775 771 765	093 129 166	2.030 2.022 2.015
23 22 21	10.645	2.665 3.918 7.670	-2.8157 -2.8080 -2.8034	-2.3539 -2.4649 -2.5946	1813 1808 1804	11.342	-1.670 -1.264	4.254 8.410	758 749	205 246	2.009 2.005
20	•	-				-		•		289	
				θ ₈₀ =	20°; u _{so} /°	= 0.50; N	1.65			т	r
######################################	0.9198 .9415 .9940 1.0490 1.1074 1.1699 1.2374 1.3108 1.3108 1.3108 1.5792 1.6907 1.8173 1.9629 2.1337 2.5764 2.8762 3.2575 3.7608 4.4591 5.4980 7.2175 10.6372 20.8538	0.2448 .2468 .2522 .2585 .2657 .2739 .2831 .2935 .3053 .3187 .3340 .3515 .3957 .4578 .4578 .4578 .4578 .4578 .10168 1.3270 1.9470 3.8057	-9.1233 -8.1415 -6.6320 -5.7033 -5.0677 -4.6026 -4.2464 -3.9644 -3.7354 -3.3568 -3.2515 -3.1354 -3.0351 -2.9478 -2.8718 -2.8034 -2.7475 -2.6931 -2.6935 -2.5634 -2.5634 -2.5634	-1.3341 -1.8563 -2.3698 -2.57384 -2.57384 -2.57384 -2.57384 -2.4045 -2.4045 -2.2057 -2.1432 -2.1245 -2.1140 -2.1123 -2.12657 -2.1140 -2.11200 -2.1382 -2.1681 -2.2705 -2.34496 -2.5798	-0.9869 -8791 -7032 -6003 -5293 -4698 -34271 -3928 -3649 -3117 -3222 -3054 -2578 -21491 -2578 -21491 -2553 -2213 -2157 -2141	-23.512 -20.336 -15.349 -12.166 -9.897 -8.156 -6.746 -5.557 -4.518 -3.584 -2.721 -1.902 -1.104 -301 -301 2.287 3.326 4.538 6.013 7.922 10.592 12.770 45.879	-4.465 -6.306 -8.322 -9.102 -9.151 -9.016 -8.832 -8.621 -8.395 -8.160 -7.674 -7.418 -7.150 -6.868 -6.5245 -5.893 -5.565 -1.568 -3.328 -2.537	-3.346 -2.927 -2.248 -1.801 -1.474 -1.219830671526391001134278437830 1.092 1.434 1.917 2.680 4.137 8.354	-0.1762002583203864555286657688951.0381.1341.233 -1.335 -1.440 -1.586 -2.003 -2.122 -2.361	1.608 1.651 1.762 1.977 1.991 2.027 2.327 2.325 2.541 2.542 2.749 2.851 2.951 3.050 3.148 3.344 3.543 3.645 3.344 3.543 3.650 3.760	5.142 5.298 5.697 6.113 6.533 6.953 7.371 7.786 8.603 9.004 9.399 9.787 10.167 10.539 11.250 11.250 11.250 11.2493 12.493 12.493 12.493 12.493

Table 1.- Coefficient functions F, G, and H and $\text{Variables} \quad \pmb{\xi}, \quad \pmb{\eta}, \text{ and } \quad \pmb{\xi} \text{ - Continued}$

θ	72		1		Τ		T	<u> </u>		Τ	
(deg)	F ₁	F ₃	₀ 1	G ₂	_G 3	H ₁	H ₂	Н3	ğ.	η	ζ
<u> </u>	Т			θ ₈₀ =	20°, u ₈₀	c = 0.65;	4º = 2.51				
33.0452 33 32.5 32.5 31.5 31.5 30.5 30.5 30.5 29.5 29.5 28.5	1.7177 1.7245 1.8014 1.8826 1.9692 2.0621 2.1624 2.2712 2.3902 2.5210 2.6657 2.8271	0.1963 .1967 .2014 .2066 .2125 .2190 .2263 .2344 .2435 .2537 .2652 .2781	-5.2914 -5.2178 -4.5517 -4.0752 -3.7127 -3.4381 -3.2145 -3.0314 -2.8788 -2.7496 -2.6391 -2.5436	-1.2739 -1.3306 -1.7834 -2.0317 -2.1697 -2.2829 -2.2829 -2.2955 -2.3006 -2.2950 -2.2853 -2.2740	-0.6912 6826 6012 5399 4918 4531 4214 3720 3720 3357 3211	-14.002 -13.6145 -10.0189 -7.1628 -5.1203 -3.2917 -1.6978 2622 1.0690 2.3367 3.5734 4.8082	-6.1995 -6.4793 -8.6989 -9.9337 -10.6193 -10.9748 -11.1328 -11.0812 -10.9485 -10.7649 -10.5501	-3.0358	-0.293 296 331 367 404 442 523 565 608 652	2.166 2.171 2.237 2.308 2.381 2.456 2.531 2.607 2.683 2.759 2.835	8.736 8.763 9.092 9.140 9.795 10.151 10.507 10.860 11.209 11.555 11.896
27.5 27.5 26.5 25.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 24.5 25.5 26.5 27.5 28.5 28.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	3.0085 3.2144 3.47233 4.0443 4.4272 4.8927 5.4718 6.2129 7.1971 8.5702 10.624 14.036 20.849 41.255	.2929 .3099 .3296 .3527 .3800 .4128 .4531 .5036 .6552 .7767 .959 1.263 1.872 3.699	-2.4604 -2.3876 -2.3232 -2.2663 -2.2158 -2.1710 -2.1313 -2.0960 -2.0652 -2.0381 -2.0150 -1.9956 -1.9800 -1.9805 -1.9611	-2.2630 -2.2534 -2.2462 -2.2424 -2.2472 -2.2572 -2.2731 -2.2558 -2.3262 -2.3653 -2.4143 -2.5488 -2.5488	3081 2967 2867 2697 2566 2510 2463 2463 2358 2358 2319 2308	6.0674 7.3803 8.7772 10.2951 11.9809 13.8971 16.1298 18.8074 22.127 26.417 32.264 40.833 54.848 82.465 164.428	-10.2986 -10.0256 -9.7328 -9.4147 -9.0749 -8.7100 -8.3225 -7.906 -7.459 -6.973 -6.443 -5.865 -5.229 -4.524 -3.732	-1040 .0790 .2686 .4687 .6846 .9231 1.1932 1.508 1.889 2.368 3.006 3.922 5.392 8.243 16.605	697 743 790 838 886 935 -1.036 -1.087 -1.139 -1.243 -1.243 -1.345 -1.345 -1.345	2.911 2.988 3.045 3.120 3.298 3.377 3.457 3.538 3.6706 3.793 3.882 3.974 4.070	12.227 12.550 12.864 13.169 13.464 13.747 14.017 14.272 14.512 14.734 14.936 15.15 15.267 15.387 15.465
20	œ	8				.		m 10.902	-1.431	4.170 4.275	15.470
				θ ₈₀ =	200; u _{so,}	/c = 0.75;	M ^o = 3.36				
28.1798 28 27.5 26.5 26.5 25.5 25.5 24.5 23.5 23.5 22.5 22.5 22.5 22.5 22.5	2.6738 2.7375 2.9279 3.1414 3.6634 3.9900 4.3782 5.4326 6.1785 7.16739 10.6027 14.020 20.837 41.246	0.1536 .1559 .1632 .1777 .1818 .1936 .2079 .2251 .2463 .2729 .3075 .3335 .4184 .5159 .679 1.005 1.985	-3.2411 -3.0346 -2.6556 -2.2766 -2.2766 -2.2766 -1.48641 -1.7227 -1.6088 -1.5157 -1.4385 -1.3743 -1.3205 -1.2757 -1.2391 -1.2100 -1.1884 -1.1746	-1.2036 -1.3811 -1.7169 -1.9100 -2.0243 -2.0936 -2.1372 -2.1668 -2.1899 -2.2663 -2.3051 -2.3655 -2.4207 -2.5043 -2.6112	-0.474045264042367231462953279426622458237123152264222521782178	-2.47753678 4.7440 9.1888 13.321 17.402 21.628 26.194 31.325 37.331 44.631 53.970 66.552 84.874 114.676 173.262 346.218	-9.1430 -10.4394 -12.9466 -14.4089 -15.230 -15.637 -15.751 -15.646 -15.370 -14.944 -14.380 -13.691 -12.860 -11.879 -7.836	-2.6656 -2.4402 -1.8962 -1.4364 -1.028 -650 -285 .081 .462 .876 1.346 1.908 2.625 3.616 5.159 8.084 16.522	-0.3974104464825195575966366777197618048478933974 -1.010	2.381 2.405 2.478 2.555 2.178 2.635 2.72 2.801 2.886 2.972 3.050 3.150 3.242 3.336 3.433 3.534 3.534 3.535 3.750 3.869	13.058 13.231 13.744 14.277 14.819 15.363 15.963 16.435 16.435 16.435 17.955 18.425 18.872 19.293 20.053 20.410
24.433	4.7991	0.1014	-0.5386								
24.0 23.5 23.0 22.5 22.0 21.5 21.25 21.25 21.0 20.75 20.5	5.3274 6.0890 7.0920 8.4827 10.5528 13.982 16.717 20.611 27.624 41.234 82.030	0.1014 .1102 .1232 .1409 .1660 .2039 .267 .318 .395 .523 .779 1.549	.3019 .4381 .5374 .6103 .6384 .6620 .6807 .6945	-1.1540 -1.5183 -1.7753 -1.9406 -2.0612 -2.1647 -2.2698 -2.3276 -2.3915 -2.4633 -2.5449 -2.6388	-0.27552496227321061980188518141788176617491729	101.29 127.82 162.06 210.42 287.84 348.36 438.11 586.32 880.34	-19.17 -23.90 -26.83 -28.10 -28.19 -27.34 -25.68 -24.51 -23.15 -21.54 -19.73 -17.67	-1.82 -1.04 20 .67 1.64 2.85 4.59 5.87 7.70 10.64 16.33 33.03	535 556 576 575 613 628 634 638 640 638 628	2.607 2.689 2.777 2.869 2.967 3.018 3.071 3.126 3.183 3.242	17.529 18.403 19.505 20.666 21.863 23.087 24.338 24.978 25.635 26.322 27.069 27.967

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND $\mbox{VARIABLES} \quad \xi, \quad \eta, \mbox{ AND} \quad \zeta \mbox{ - Continued }$

θ (30π)	F ₁	F ₃	G ₁	G ₂	_{G3}	H ₁	H ₂	н ₃	ŧ	η	ζ
(deg)											
			θ _Β	o = 30°;	u _{so} /c =	0.35; M		· · · · · · · · · · · · · · · · · · ·	 1		
63 63 63 63 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	0.5756 .5846 .6132 .6431 .6743 .7069 .7412 .8156 .8562 .8994 .9456 .9953 1.0488 1.1700 1.2392 1.3156 1.4953 1.6025 1.7586 2.268 2.4643 2.7586 3.1340 3.6310 4.322	.2415 .2472 .2531 .2535 .2663 .2737 .2814 .2899 .3988 .3196 .3196 .3581 .3736 .3999 .4315 .4839 .5536 .5536 .5536 .5536 .7957 .8991	-5.6588 -5.5395 -5.2102 -4.9341 -4.9388 -4.4955 -4.1614 -3.8981 -3.7855 -3.7855 -3.7855 -3.7855 -3.7855 -3.7855 -3.7855 -3.7855 -3.7855 -3.1910 -3.4352 -3.1911 -3.0564 -3.0564 -3.0564 -3.0564 -3.0564 -3.0564 -3.0564 -3.0564 -3.0589 -2.9536 -2.9536 -2.9536 -2.8586	-0.4028 4613 6100 7203 8040 8688 9197 9603 9932 -1.0623 -1.0623 -1.0623 -1.0792 -1.1213 -1.1213 -1.1213 -1.1470 -1.1602 -1.1602 -1.1602 -1.1602 -1.1602 -1.1602 -1.1602 -1.1602 -1.1890 -1.2891 -1.2891 -1.2891 -1.3479	-0.2647 2595 2453	-13.6739 -13.2030 -11.8888 -10.7725 -9.7876 -8.9229 -8.1487 -7.4469 -6.8055 -6.2120 -5.6591 -5.6591 -4.1783 -3.7265 -3.2884 -2.0170 -1.5944 -2.0170 -1.5944 -1.1646 -7226 -2612 -2822 -7570 1.3412 2.0840 2.7815	-1.6360 -1.8696 -2.4651 -2.9077 -3.2422 -3.4972 -3.6927 -3.8422 -3.95555 -4.0388 -4.0978 -4.1585 -4.1649 -4.1586 -4.1649 -4.1381 -4.0645 -4.0645 -4.0645 -3.9481 -3.9481 -3.7885 -3.6912 -3.5828 -3.5828	-0.9703 9359 8381 7523 6755 6054 5405 4797 4219 3664 3125 2598 2076 1029 0494 0555 .025 .025 .1223 .1856 .2535 .3273 .4985 .4995 .6032 .7241 .8684 1.0462 1.2742 1.5820	-0.381 -388 -410 -431 -471 -490 -508 -525 -574 -577 -578 -634 -634 -663 -664 -667 -683 -686 -687 -686 -687 -6887 -6887 -6887 -6887	0.877 .869 .847 .8266 .748 .7490 .757 .757 .757 .757 .757 .757 .757 .75	1.686 1.674 1.645 1.624 1.599 1.599 1.588 1.587 1.587 1.589 1.598 1.604 1.619 1.628 1.648 1.648 1.648 1.671 1.726 1.7711 1.796 1.796 1.817
34 33 32 31 30	5.354 7.066 10.477 20.686	1.517 1.997 2.954 5.827	-2.8277 -2.8165 -2.8083	-1.4693 -1.5217 -1.5819 -1.6514	1395 1390 1385	6.6894 9.3956	-2.3534 -2.0820 -1.7744	2.0291 2.7534 4.1682 8.3384	671 662 649 629	.270 .248 .227 .207 .188	1.840 1.866 1.897 1.937
	-		θ	_o = 30°	, ц _{яо} /с	• 0.55; M	0 = 2.33	·	·		
44.1237 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30	1.5139 1.5289 1.6584 1.8057 1.9764 2.1778 2.4202 2.7192 3.0992 3.6007 4.2968 5.3330 7.0493 10.465 20.678	.1930 .2032 .2155 .2303 .2484 .2708 .2990 .3355 .3846	-4.0623 -3.6648 -3.3764 -3.1676 -2.9873 -2.8511 -2.7409 -2.6508 -2.5771 -2.5172 -2.4692 -2.4210 -2.4952	9447	3140 2781 2514 2309 2151 2016 1910 1822 1751 1693 1646 1610	-9.0885 -6.2917 -3.9464 -1.8409 2.1860 4.3070 6.6792 9.4778 13.012 17.878 25.413	-4.0531 -4.3020 -5.7816 -6.6285 -7.1031 -7.3365 -7.4001 -7.3343 -7.1600 -6.8870 -6.517 -6.046 -5.462 -4.748 -3.873	-1.3811 -1.0407 7551 5003 2608 0240 .2219	525 573 622 671 720 769 818 867 916 964 -1.011 -1.057 -1.134	1.671 1.697 1.726 1.757 1.789 1.821 1.853 1.886 1.919 1.952 1.986 2.021 2.058	8.635 8.901 9.162 9.416 9.662

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND .

VARIABLES ξ , η , AND ζ - Continued

			F	1	Ι		T		 	, 	1
θ (deg)	F ₁	F ₃	_{G1}	G ₂	G ₃	H ₁	H	H ₃	ξ	η	ا ک
(008)					` -				ļ		
	<u> </u>	-	L.,	·	L	L		L	<u> </u>	<u> </u>	·
			θ_{B_0}	$_{0} = 30^{\circ};$	$u_{B_0}/c =$	0.65; M	° = 3.16				
							<u> </u>	1		Γ	
39.1748	2.3176	0.1561	-3.1456	-0.6787	-0 . 2556	-1.983	-6.428	-1.248	-0.644	1,913	9.913
39.0	2.3652		-3.0704	7418	2494	984		-1.153		1.919	
38.75	2.4361	.1618	-2.9725	8202	2412	.398	-7.569	-1.022	663	1.928	10.093
38.5	2.5107	.1655		8871	2336	1.738	-8.104	897	674	1.937	10.205
38.25	2.5894		-2.8046	9445	2268	3.049	-8.556	776			10.320
38.0	2.6725	.1737			2204	4.341	-8.935	658			10.438
37.75	2.7606		-2.6663	-1.0370	2154	5.623	-9.259	543			10.559
37.5	2.8540	.1830	-2.6060	-1.0746	2093	6.905	-9.530	430			10.682
37.25	2.9535	.1881	-2.5507	-1.1077	2043	8.195	-9.747	319			10.807
37.0	3.0596	.1937			1997	9.503	-9.931	207	740	2.000	10.934
36.75	3.1731	.1997	-2.4527	-1.1631	1954	10.836	-10.070	096			11.062
36.50	3.2949	.2062	-2.4094	-1.1867	1914	12,203		.016			11.191
36.25	3.4260	.2132	-2.3692		1878	13.614		.129			11.321
36.0	3.5675	.2209		-1.2276	1843	15.082	-10.356	.246			11.452
35.75	3.7208	.2293		-1.2458	1811	16.615	-10.352	.365			11.584
35.50	3.8875	.2384			1782		-10.327	.487	801	2.071	11.716
35.25	4.0695			-1.2790	1754	19.935	-10.302	.615	811	2.084	11.849
35.0	4.2693	-2595	-2.2078	-1.2945	1728			.748	821	2.097	11.981
34.75	4.4894	.2717	-2.1820		1703	23.708	-10.191	.889	831	2.110	12.117
34.50	4.7334			-1.3244	1680	25.817	-10.101	1.038	841	2.123	12.247
34.25	5.0055			-1.3392	1660	28.116	-9.995	1.198	851	2.136	12.380
34.0	5.3110	•3179		-1.3541	1640	30.643	-9.867	1.370	861	2.150	12.513
33.75	5.6564			-1.3693	1622	33.441	-9.722	1.560	870	2.164	12.646
33.50	6.0503		-2.0779		1606	36.577	-9.557	1.766	879	2.178	12.779
33.25	6.5041		-2.0614		1589	40.149	-9.384	1.997	888	2.192	12.912
33.0	7.0325	•4158	-2.0464	-1.4178	1576	44.188	-9.168	2.259	897	2.206	13.045
32,75	7.6561	•4515	-2.0347	-1.4355	- <i>.</i> 1563	48.916	-8.945	2,558	905	2.221	13.178
32:50	8.4033	-4944	-2.0198	-1.4541	1550	54.509	-8.703	2.908			13.311
32.25	9.3154	.5469	-2.0085	-1.4739	1540	61.244	-8.439	3.325	921	2.251	13.445
32.0	10.454	.613	-1.9982	-1.4950	1530	69.56	-8.15	3.83			13.580
31.75	11.916	.697	-1.9891	-1.5176	1522	80.16	-7.84	4.47			13.716
31.50	13.864	.810		-1.5417	1516	94.09	-7.51	5.31	939	2.299	13.855
31.25	16.588	.967	-1.9745	-1.5677		113.46	-7.16	6.46	943	2.316	13.997
31.0		1.204	-1.9688	-1.5956		142.31	-6.78	8.17	946	2.333	14.145
30.75		1.599	-1.9644	-1.6258		190.10	-6.37	10.97	947	2.351	14.304
30.5		2.389		-1.6584		285.20	-5.93	16.51			14.482
30.25		4.760	-1.9593	-1.6938	1496	569.68	-5.46	33.10	935		14.702
30.0	ω :	∞ .				∞ ¯		- ∞		2.408	
L								Ll			
								<u></u>			

~ NACA_

TABLE 1.- COEFFICIENT FUNCTIONS F, G, AND H AND $\mbox{VARIABLES ξ, η, AND ζ-Concluded }$

		1	1	1			г -		ı		,
θ (deg)	F ₁	F ₃	G ₁	₆₂	_с 3	H ₁	H ₂	₩3	Š	η	ζ
				9 ₅₀ = 30°); u _{so} /c	= 0.70; M	° = 3.85	•			
37.2678 37.25 37	2.9101 2.9175 3.0255	.1367 .1405	-2.6024 -2.5948 -2.4950	6927 7837	-0.2198 2192 2116	7.3361 7.4975 9.7280	-8.6338 -9.4811	-1.0485 8814	713 722	2.010 2.019	11.186 11.197 11.351
36.75 36.5 36.25 36	3.1408 3.2642 3.3968 3.5399	.1494 .1543	-2.4062 -2.3271 -2.2561 -2.1921	8608 9265 9831 -1.0321	2048 1986 1929 1877	11.913 14.078 16.245 18.438	-10.167 -10.728 -11.190 -11.550	720 562 407 254	740 748	2.039 2.050	11.512 11.679 11.851 12.027
35.75 35.5 35.25	3.5399 3.6946 3.8627 4.0461	.1719 .1790	-2.1342 -2.0818 -2.0341	-1.0750 -1.1129 -1.1467	1830 1786 1747	20.678 22.990 25.396	-11.841 -12.053 -12.213	100 .054 .212	764 772 780	2.074 2.086 2.099	12.207 12.390 12.575
35 34.75 34.5 34.25	4.2471 4.4686 4.7138 4.9871	.1956 .2052	-1.9907 -1.9509 -1.9146 -1.8813	-1.2049 -1.2306	1710 1676 1646 1617	27.923 30.603 33.472 36.570	-12.318 -12.365 -12.373 -12.338	.373 .539 .713 .896	796 803	2.126 2.140	12.762 12.951 13.142 13.334
34 33.75 33.5	5.2937 5.6403 6.0354	.2283 .2422 .2581	-1.8509 -1.8230 -1.7975	-1.2776 -1.2997 -1.3213	1591 1567 1544	39.951 43.679 47.832	-12.271 -12.164 -12.023	1.090 1.299 1.527	817 824 830	2.169 2.184 2.199	13.527 13.722 13.917
33.25 33 32.75 32.5	6.4902 7.0198 7.6444 8.3925	.2979	-1.7742 -1.7530 -1.7336 -1.7161	-1.3643 -1.3863	1525 1506 1489 1474	52.517 57.872 64.085 71.419	-11.853 -11.645 -11.409 -11.138	1.777 2.057 2.374 2.742	842 847	2.231 2.247	14.113 14.310 14.508 14.707
32.25 32 31.75	9.3056 10.445 11.909	.3915 .438 .499	-1.7004 -1.6863 -1.6739	-1.4325 -1.4573 -1.4835	1461 1448 1438	80.252 91.152 105.002	-10.839 -10.506 -10.136	3.175 3.701 4.357	856 859 861	2.281 2.299 2.317	14.907 15.109 15.314
31.5 31.25 31 30.75	13.858 16.533 20.668 27.473	.579 .692 .861 1.143	-1.6526 -1.6531 -1.6460 -1.6406	-1.5735	1427 1417 1416 1405	123.285 148.656 186.431 249.018	-9.738 -9.301 -8.828 -8.310	5.211 6.379 8.099 10.921	861 858	2.355	15.522 15.735 15.956 16.189
30.5 30.25 30	41.074 81.862	1.708 3.402 ∞	-1.6357		1405 1404	373.615 746.260	-7.751 -7.148	16.496 33.084 ∞	841	2.416	16.443 16.743
			6	_{so} = 30 ^c	; u _{so} /c	= 0.75; M	5.011				
35.6310 35.5	3.7333 3.8244	0.1158 .1184	-1.9555 -1.9027	-0.6906 7446	-0.1830 1801	27.724 29.898	-12.093 -12.720	-0.7734 6579	-0.782 785		12.060 12.191
35.25 35.0 34.75	4.0102 4.2134 4.4369	.1295 .1359	-1.8119 -1.7323 -1.6620	8349 9116 9774	1749 1702 1660	34.082 38.352 42.773	-13.732 -14.537 -15.168	4409 2260 0105	-•795 -•799	2.116 2.128	12.451 12.725 13.010
34.5 34.25 34 33.75	4.6841 4.9593 5.2677 5.6161	.1600 .1702	-1.4947 -1.4505	-1.0846 -1.1292 -1.1695	1622 1587 1556 1527	47.416 52.349 57.665 63.458	-15.651 -16.005 -16.247 -16.390	.2078 .4315 .6641 .9084	807 810	2.155 2.170	13.305 13.610 13.923 14.244
33.5 33.25 33	6.0129 6.4695 7.0006	.1818 .1951 .2107	-1.4108 -1.3751 -1.3432	-1.2065 -1.2410 -1.2738	1502 1478 1458	69.861 77.030 85.140	-16.443 -16.415 -16.303	1.1689 1.4505 1.7597	816 818 820	2.201 2.217 2.234	14.573 14.909 15.252
32.75 32.5 32.25 32	7.6269 8.3768 9.2914 10.4326	.2513 .2783 .3120	-1.3145 -1.2889 -1.2662 -1.2460	-1.3367 -1.3679	1438 1422 1407 1393	94.595 105.67 118.97 135.02	-16.135 -15.892 -15.582 -15.208	2.1054 2.4994 2.9592 3.5095	822 822 821	2.270 2.289 2.308	15.602 15.958 16.325 16.701
31.75 31.5 31.25	11.8975 13.8478 16.5752	.3554 .4132 .4932	-1.2283 -1.2130 -1.2001	-1.4324 -1.4666 -1.5028	1382 1372 1363	156.11 183.48 221.44	-14.768 -14.263 -13.691	4.1905 5.0679 6.2601	819 816 810	2.328 2.349 2.371	17.089 17.493 17.918
30.75 30.5	20.662 27.469 41.072 81.858	.615 .818 1.222 2.435	-1.1748	-1.5415 -1.5832 -1.6284 -1.6778	1356 1351 1347 1344	277.91 371.43 557.51 1113.8	-13.048 -12.332 -11.538 -10.660	8.004 10.849 16.449 33.059	791 773	2.416 2.440	18.369 18.860 19.421 20.125
30	ω	80				80		ω .			

TABLE 2.- R_{W_O}/R_{g_O} AND M^O AT VARIOUS $VALUES \ OF \ \theta_{g_O}$

θ_{s_0}	, = 10 ⁰	$ heta_{s_{\mathcal{C}}}$	= 20 ⁰	$\theta_{s_0} = 30^{\circ}$		
Мо	R_{W_O}/R_{S_O}	Мо	R_{W_O}/R_{S_O}	Мо	R_{W_O}/R_{S_O}	
1.09	7.63	1.22	-0. 275	1.52	0.179	
1.60	40.1	1.65	2.83	2.33	1.30	
2.39	12.0	2.51	2.19	3.16	1.24	
3.30	5.23	3.37	1.72	3.85	1.17	
5.42	2.35	5.55	1.30	5.01	1.11	

Figure 1.- General notations.

Figure 2.- Diagram illustrating formulation of boundary conditions at shock wave.

Figure 3.- Velocity components at a point on shock.

Figure 4.- Variation of ratio of curvature with M°. Data for ${\bf m}_{\theta},$ ${\bf \rho}_{\theta},$ and ${\bf h}_{\theta}$ taken from reference 7.

Free-stream Mach number, M°

Figure 5.- Variation of ratio of curvature with ${\tt M}^{\tt O}$ in two-dimensional case.